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Abstract—Topological via-minimization (TVM) algorithms in
two-layer channels based on the artificial neural network model
are presented in this paper. TVM problems require not only
assigning wires or nets between terminals without an intersec-
tion to one of two layers, but also a minimization of the number
of vias, which are the single contacts of nets between two lay-
ers. The goal of our algorithms is to embed the maximum num-
ber of nets without an intersection. Two types of TVM prob-
lems are examined: split rectangular TVM (RTVM) problems
and split circular TVM (CTVM) problems. Our algorithms re-
quire 3n processing elements for the n-net split RTVM prob-
lems, and 5n processing elements for the n-net split CTVM
problems. The algorithms were verified by solving seven prob-
lems with 20 to 80 nets. The algorithms can be easily extended
for more-than-two-layer problems.

I. INTRODUCTION
1. Via-Minimization Problems

VIA-MINIMIZATION problems in two-layer chan-
nels are very important in the automatic design of
VLSI chips and printed circuit boards (PCB’s) {11, [2].
Not only must given wires be assigned to one of two lay-
ers without an intersection, but also the number of vias
must be minimized. A via is a single contact for a wire,
which establishes the connectivity between two layers. A
via is sometimes called a through hole in PCB’s. It is also
called a layer contact in VLSI chips. More vias not only
reduce the reliability of products, but also increase the
manufacturing cost. Because the physical dimension of
vias is usually larger than the wire width, more vias in-
crease the chip size. The two-layer technology using a
metal layer and a polysilicon layer has been widely used
in VLSI chips, while the current advancement in VLSI
chip technology allows us to use four layers using two
metal layers and two polysilicon layers [1]. Two-layer via-
minimization algorithms, which can be flexibly extended
for multi-layer channels, are in strong demand.

In a via-minimization problem, a set of nets are given
with a multi-layered channel. A net represents a wire in-
terconnecting terminals which are located on the channel
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boundary. It is required to embed each net on one of the
given layers while any two nets do not intersect each other
in any layer. It is also required to minimize the number
of vias.

Two kinds of via-minimization problems have been ex-
tensively studied [3}-[21]: constrained via-minimization
(CVM) problems, and topological via-minimization
(TVM) problems. In CVM problems, because the wire
location in the channel is already fixed for any net, it is
only required to find the layer number of each wire. CVM
problems were introduced by Hashimoto et al. in 1971
[3]. It was proven that CVM problems are NP-complete
when the maximum junction degree is four or more de-
grees [17]. Junction degree refers to the number of wire
segments meeting at a single point for the electrical cor-
rection. CVM problems are polynomially solvable when
the maximum junction degree is less than four [7], [14].
In TVM problems, it is assumed that the wire width and
the via size are infinitely small, and no restriction is im-
posed on the shapes or locations of wires and vias. TVM
problems require to find the topological location of each
net. TVM problems were introduced by Hsu in 1983 [8].
It was proven that TVM problems are NP-complete even
in the simple case where only two-terminal nets are routed
in a two-layer channel [19].

In 1989, Rim et al. introduced two new TVM problems
with only two-terminal nets to be routed in a k-layer chan-
nel [20]: split rectangular TVM (RTVM) problems and
split circular TVM (CTVM) problems. In split RTVM
problems, the channel is a rectangle where the same num-
ber of terminals are located on the top side and the bottom
side. In split CTVM problems, the channel is a double
circle where the same number of terminals are located on
the two circles and all the nets must be embedded on the
region between the two circles. In both problems, each
net has one terminal on one side of the channel and an-
other terminal on the other side. Rim ef al. showed that
split RTVM problems are solvable in O(kn?) time, and
split CTVM problems in O(nZk”) time, where n is the
number of nets and k is the number of layers. They pro-
posed the sequential algorithms.

2. Neural Network Approach

In our approach for split RTVM/CTVM problems in
two-layer channels, the problems are divided into two
steps. In the first step, we maximize the number of nets
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embedded in the two-layer channel without any intersec-
tion. In the second step, we must find the locations of the
vias in order to embed the remaining nets. This paper pro-
poses parallel algorithms for the first step of our ap-
proach. The algorithms can be easily extended for multi-
layer channels.

Our algorithms are based on two-dimensional artificial
neural network models, which are simplified mathemati-
cal models for biological neural networks of human
brains. A neural network model consists of a large num-
ber of neurons and synapses. A neuron is a simple pro-
cessing element having an input and an output, which are
connected by a nondecreasing function. A synapse rep-
resents the interconnection from outputs of several neu-
rons to an input, where the information is transferred.

Hopfield and Tank first introduced neural network
models for solving combinatorial optimization problems.
They used the sigmoid neuron model as the input/output
function [22], where the output V;; of processing element

ij is given by
1 Uij
Vo,==1{1+t —
’ 2< a"h<vo>>

where U;; is the input of processing element ij and U, is
the constant parameter. Because the sigmoid model is slow
for the convergence, Takefuji er al. have adopted the
McCulloch-Pitts model [23] for optimization problems
[24]1-[34], where V; is given by

(1

i

otherwise V;; = 0.

@

In order to further improve the convergence, this paper
adopts the modified McCulloch-Pitts model [25], where
V;; is given by

if U; > Oand U;; = max {Ug} forg =1, -, m
then V,] =1

otherwise V;; = 0

3

where m is the number of choices of the layer assignment
of net i. As described in the following sections, m is 3 for
split RTVM problems, and 5 for split CTVM problems.

In the neural network approach to an optimization prob-
lem, first we must define the computational energy func-
tion E(Vyy, * - *, Vum), which represents all the con-
straints of the problem. Because the solution state of the
neural network model has a minimum energy function,
we must minimize the energy function by using a motion
equation, which is given by

dUj — QE(Wy, = s Vaw)

ar avy; ) “

It was proven that the motion equation forces the state of
the neural network model to converge to the local mini-
mum [26].

!

There are two kinds of users for sequential/parallel al-
gorithms for via-minimization problems. One user prefers
the global minimum solution, where the computation time
is a second concern. The other user requests not only a
reasonable solution, but also a computation time as short
as possible. We propose algorithms for the second user to
solve split RTVM/CTVM problems in order to satisfy the
requested reasonable solution quality and computation
time, while the algorithms find the global minimum so-
lution in more than a 50% frequency.

II. SpLIT RTVM PrOBLEMS IN Two-LAYER CHANNELS
1. System Representation for Split RTVM Problems

Fig. 1(a) shows a split RTVM problem in a two-layer
channel with five nets: (1, 4), (2, 1), (3, 3), (4, 3), and
(5, 2). Note that net i (i, n;) represents the connection
between terminal i on the top side of the channel and ter-
minal #; on the bottom side. For each net, three process-
ing elements are required for the assignment. A total of
15 (=3 x 5) processing elements are required in this
problem as shown in Fig. 1(b). Generally, a total of 3n
processing elements are required for the n-net problems.
The nonzero output of processing element ij (V;; = 1) for
j = 1 or2 indicates that net i is assigned on layer j, while
V., = 1 indicates that net i cannot be assigned on any
layer without an intersection. The zero output Vi =0
indicates no assignment.

In order to assign every net, one and only one output
among three processing elements for net i, when i = 1,

-, n, must be nonzero. The energy function E, rep-
resenting this constraint is given by

n 3 2
E1=Z<21Viq—l>. (5)

i=1 \g=
E, is zero if, and only if, every net is assigned on one of
the three choices. Fig. 1(b) also shows one solution,
where black squares indicate the nonzero output and white
squares indicate the zero output. This solution shows that
nets 1 and 3 are assigned on layer 1, nets 2 and 5 on layer
2, and net 3 cannot be assigned on any layer. Fig. 1(c)
shows the corresponding routing solution.

Any two nets must not intesect each other on any layer.
Fig. 2 shows the intersecting conditions of net i (i, n;) and
net p (p, n,) on layer j fori # p and n; # n,. The energy
function E, rewpresenting this constraint is given by

uM:

2 n
E2 = i lj:Zl ;l (g(p9 i)g(nb np)
#

P
p*!
+ g, p)g(n, n)Vy,Vi; (6)
where g(x, y) is 1 if x > y, and g(x, y) isQifx < y. E
is zero if, and only if, there is no intersection.

In order to minimize the number of vias, the number of
third processing elements having nonzero output must be
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Fig. 1. System representation for a five-net split RTVM problem. (a) A
five-net split RTVM problem. (b) 5 X3 processing elements for the problem
and the convergence to a solution. (c¢) The corresponding routing solution.

i P p i
ny n; n; n
i<p and n>ny i>p and nj<ny

Fig. 2. The intersecting conditions for split RTVM problems.

minimized. It is assumed that the maximum number, N g,
of nets, which are not allowed to be embedded on any
layer, is provided beforehand. By repeating our algorithm
with a smaller N,,, it is possible to minimize the number
of vias. From this constraint, at most Ny third processing
elements can have nonzero output. The energy function is
given by

Ey= 2u Z. Vi — Now + 1]V @)
= p=
p#i

where u(x) is 3 if x > 0, and u(x) isOifx < 0. Ey is
zero if, and only if, the number of third processing ele-
ments having nonzero output is Nyo OF fewer.

The total energy function E for n-net split RTVM prob-

lems is given by

E = A/2E, + BE, + BE;

3 2
(-
g=1

2
2
1j=1

I

1
Ai

Il

i

HM:

gl (g(p, ) gn, ny)
-

+ g(i, p)g(ny, nN Vi Vij

+ B

{

n
El Vs — Now + 1| Vi (8
p#EIL
where 4 and B are constant coefficients. The motion equa-

tion of the first and second processing elements (j = 1 or
2) for net i is given by

. 3 n
—_ = —A< Z V,'q - 1> - B Z (g(P, i)g(ni’ np)
g=1 p=1

p#i

+ g(ls P)g (np9 ni)) ij . (9)

The A-term forces one processing element among the three
for net i to have nonzero output in order to decide the
assignment. The B-term discourages processing element
ij from having nonzero output if other nets intersect net i.
The motion equation for the third processing element is

given by
3
dU,,
Do g L V-1
dt <q= “ )

n
— Bu El Vs = Noo + 1
p*l

(10)

The B-term discourages processing element i3 to have
nonzero output if N, or more processing elements al-
ready have nonzero output.

2. Three Heuristics for the Global Minimum
Convergence

Only the local minimum convergence is proven in the
neural network model, although we must consider the
global minimum convergence. In order to increase the
frequency of the global minimum convergence, the fol-
lowing three heuristics have been empirically introduced
[25]:

1. The hill-climbing heuristic: the following C-term
is added to the motion equations

3
+Ch<2 V,»q>
g=1

where h(x) is 1 if x = 0, and h(x) is 0 if x = 0, and C
is a constant coefficient. The C-term encourages process-
ing element ij to have nonzero output if no processing
elements for net i have nonzero output. It provides a pos-

an
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itive force for the state of the system to escape the local
minimum.

2. The omega function heuristic: the following two
forms of the B-terms are used periodically:

if (¢t mod T) < w then (B-term)

= ~B X (g(p. i) g my) + g, p)

p¥i
: g("p; ni)) ij Vl/

otherwise (B-term)

= =B 2 (g(p. gl my) + 8. Pglny. n))V,,

p¥Ei
forj = 1 or 2; 12)
if (¢ mod T) < w then (B-term)
=-Bu| 2 Vy— N+ 1]V,
=1
b
otherwise (B-term)
= —Bu Z)] Vs — Npor + 1
i
forj = 3; (13)

where ¢ is the number of iteration steps, and w and T are
constant parameters. The omega function heuristic em-
pirically makes a local minimum shallower according to
the ratio between T and w, thus the state of the system can
easily escape the local minimum.

3. The input saturation: the input of the processing
element is confined between two values:

if U;; > U_max then U;; = U_max

if U;; < U_min then U;; = U_min (14)
where U_max and U_min are constant upper and lower
limits of U;; respectively. Because the input saturation re-
duces the number of possible states of the system, the
searching space is limited.

3. Parallel Algorithm for Split RTVM Problems

The following procedure represents our parallel algo-
rithm for r-net split RTVM problems. It maximizes the
number of nets embedded on one of two layers without an
intersection. The parameter set in step O are empirically
determined, where 7_max1 and 7_max2 are the maximum
numbers of iteration steps for the global and local mini-
mum convergence respectively.

0) Sett =0,A=B=1,C=15,U_max =20, U_min

= =20, Ny = 1, T =10, w = 5, T_maxl = 500,
and 7_max2 = 1000.

773

1) Initialize U;;(¢) fori =1, --- ,nandj=1,2,3
by using random numbers between 0 and U_min,
and initialize V;;() by 0.

2) Use the motion equations with the hill-climbing
heuristic and the omega function heuristic to com-
pute AU;;(1), where Ny = 3 if 1 > T_maxl1:

if (¢! mod T) < w then
3
AU;(0) = *A< L Vi) = 1>
g=
- Bp§] (g(p, i)gn;, ny)

p#i

+ g, pgny, n)V,; ) V(1)

3
+ Ch< ZI V,»q(t)> (16)
¢

forj=1or2; __
and if £ < 100 then AU;;3(t) = O

3
otherwise AU;5(f) = ~A< Zl Vig() — 1> — Bu
q=

Z Vp3 = Ny + 1 Vij(t)
p=1

pFi
3
+ Ch< ZI V,q(t)>
o=

if ¢ mod T) = w then

3 n
AU () = —A< >:3, Vg — 1> - B ZJI (g(p. g
! bei
©(ny, np) + g(, p)g(nps ny) ij(t)
3
+ Ch< 2 V,-q(t)> (18)
g=1
forj = lor2;
and if t < 100 then AU;5(1) = 0
3
otherwise AU, 4(f) = —A( Zl Vi @ — 1) — Bu
o
2V = N + 1
p=1 P
pEI
3
+ Ch< Z] V,»q(t)>. (19)
o

3) Update U;;(t + 1) based on the first-order Euler
method:

AU, + 1) = Uy + AU (). (20)
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4y Use the input saturation heuristic:
if Ut + D > U max then U;;(t + 1) = U _max
if U;;(t + 1) < U_min then U, + 1) = U_min.
21

5) Update V(¢ + 1) based on the modified

McCulloch-Pitts neuron model:
itU;¢+1)>0 and U;;(t + 1)
= max {U,,(t + 1)}

forg =1, -+ ,mthen V;;(z + 1) =1

otherwise V;;(t + 1) = 0. 22)

6) If all conflicts are resolved, or t = T _max2, then
terminate this procedure, otherwise increment f by
1, and go to step 2.

We examined both the global minimum convergence
and the local minimum convergence in simulated prob-
lems. Because the global minimum solutions have only
one via, we assigned N, as 1 for the global minimum
solution, and as 3 for the local minimum solution. We
changed N, from 1 to 3 when 1 is greater than T_max1
in step 2.

4. Simulation Results and Discussion for Split RTVM
Problems

The simulator has been developed on a Macintosh in
order to verify our algorithm. The newly created seven
problems shown in Table I were simulated. Figs. 3-5
show one global minimum solution for three of the prob-
lems respectively. Our algorithm found several other so-
lutions in the same problems from the different initial val-
ues of U;; (7). Table I summarizes the average number of
required iteration steps and the convergence frequency in
the global/local minimum solutions, and the average
number of nets that could not be assigned in any solu-
tions. In each problem, 100 simulation runs were per-
formed from differential initial values of U;;(1) in order to
avoid the initial value dependence of neural network
models. In split RTVM problems, our simulation results
empirically show that the parallel algorithm can embed
the maximum number of nets in the two-layer channel in
a nearly constant time with 35 processors.

L. Spitr CTVM ProBLEMS IN Two-LAYER CHANNELS
1. System Representation for Split CTVM Problems

Fig. 6(a) shows a split CTVM problem in a two-layer
channel with five nets: (1, 3), (2, 2), (3, ). (4, 5), and
(5, 4). Note that net i (i, n;) represents the connection
between terminal i on the outside circle of the channel and
terminal n; on the inside circle. Because two routing routes
shown in Fig. 6(b), a clockwise route and a counterclock-
wise route, are available on one layer for each net, a total
of four routing routes are available for each net. For each

net, five processing elements are required for the assign-
ment. A total of 25 (=5 X 5) processing elements are
required in this problem as shown in Fig. 6(c). Generally,
a total of Sn processing elements are required for the
n-net problems. The nonzero output of processing ele-
ment i1 (V;, = 1) indicates that net i is assigned on the
clockwise route of layer 1, V;; = 1 on the counterclock-
wise route of layer 1, V;3 = 1 on the clockwise route of
layer 2, and V4 = 1 on the counterclockwise route of
layer 2, while V;5 = 1 indicates that net i cannot be as-
signed on any layer route without intersection. The zero
output (V;; = 0) indicates no assignment.

In order to assign every net, one and only one output
among five processing elements for net i for i = 1,

-, n must be nonzero. The energy function E, repre-
senting this constraint is given by

4 5 2
E4=Z< ‘Viq—1>.
i=1 g=1

E, is zero if, and only if, every net is assigned in one of
five choices. Fig. 6(c) also shows one solution where nets
| and 4 are assigned on the clockwise route of layer 1,
net 2 on the clockwise route of layer 2, net 5 on the coun-
terclockwise route of layer 2, and net 3 cannot be assigned
on any layer route. Fig. 6(d) shows the corresponding
routing solution.

Any two nets must not be intersected on any layer. Fig.
7 shows the intersecting conditions for clockwise routes
of net i (i, n;) and net p (p, n,) fori # p and n; # n,.
The energy function Es representing this constraint in
clockwise routes is given by

23)

E5:

H.M:

'Z:w ,Zn (fni, D) f(p. np)&(ps g, 1)
Jj=nL3ap=

p#Ei

i=1

+f(nzv i)g(nps P)(g(Pv I) + g(nis np)))ijJerl'j

£ 3NN (gl [ )P D
i= =1,3p=
p+i

+ g(n;, ny) + g, n)giny, P Vi iVij

£ 0 B8 (o, Df . p)(8G PIE 1)
i=1j=13p=

p#Ei
+ g(p, g, ny) + fln, DHgp, ny)
- (g(l, P) + g(nps ni))) ijVi_/

+éZ

i=1j=1.3

[2:"‘[ (g(17 ni)f(np» P)(g(p, l)

pFEI
+ g, my)) + g, n)g(p, m)(8(p, i)g(n;, ny)

+ g, pygn,, n VY, Vi (24)
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TABLE I
SUMMARY OF SIMULATION RESULTS FOR THE SPLIT RTVM PROBLEMS
Convergence to Convergence to Global Minimum
Global Minimum or Local Minimum
Average No. of Average No. of Average No. of
No. of Nets Iteration Iteration Non-Assigned
n Steps Frequency Steps Frequency Nets
Problem 1 20 117.7 99 % 121.7 100% 1.0
Problem 2 30 116.4 100% 116.4 100% 1.0
Problem 3 40 124.7 55% 300.6 100% 1.6
Problem 4 50 125.4 98% 125.4 98 % 1.0
Problem 5 60 126.1 99 % 126.1 99 % 1.0
Problem 6 70 129.5 63% 285.3 99% 1.7
Problem 7 80 141.9 68% 275.4 100% 1.6

(@)

(b)

Fig. 5. A simulation result for Problem 7. (a) The convergence of 80x3
(b) processing elements to a solution. (b) The corresponding routing solution.

Fig. 3. A simulation result for Problem 1. (a) The convergence of 20x3

processing elements to a solution. (b) The corresponding routing solution.

constraints in counterclockwise routes is given by

EFZ“ Z (f G, n) f (. P) 8 i )G (s 1)
p#r

+ f@i, n)g(p, n,) (g, p) + gn,, m) V-1V,

+ 2 Z Z (gn, i) f(n,, py(gQ, p)

i=1j=2

p:#l

+g(np9n))+g(nzsl)g(p’ p)) ]—l

+ ;IJ_Z Z (f G n) (. mp)(g(p, g iy mp)
p¢i

+ g(l’ p)g(npv ni)) + f(h ni)g(npa P)(g(P, l)
+ g, )NV,

(b)
Fig. 4. A simulation result for Problem 4. (a) The convergence of 50x3

processing elements to a solution. (b) The corresponding routing solution. + Z Z Z (g(nl , l)f(P, p) (g(l P)
i=1j=24

p # i
where f(x, y)is 1 ifx = y, and f(x, ) is O if x < y. Es
is zero if, and only if, there is no intersection in clockwise
routes. Similarly, the energy function E4 representing the + g3, p)g(ny, NV, Vij- (25)

+ g(npa ni)) + g(nis i)g(nps P)(g(l’a l)g(nn np)
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~

~

(b)

13t Layer Clockwise Route

2 1st Layer Counterclockwise Route
! l 3 2nd Layer Clockwise Rout
4 2nd Layer Counterclockwise Route
S Via Necessary
(©)

Fig. 6. System representation for a five-net split CTVM problem. (a) A
five-net split CTVM problem. (b) The two routing routes on one layer. (c)
5x5 processing elements for the problem and the convergence to a solu-
tion. (d) The corresponding routing solution.

Es is zero if, and only if, there is no intersection in coun-
terclockwise routes.

The fifth processing element of each net has the same
role as the ihird processing element in split RTVM prob-
lems. The energy function E; for the fifth processing ele-

ny n; n n n, m ony n mn
i<n; and p2ny isn; and p<my i>n; and p2ny i>ns and p<n,
and i<p and np>ny and (i<p or ny>ny) and (i<p or ny>ny) 1 ond Pty

| i | p %é\
mo omp mp N Dy n Ny
i<n; and p<n, i<n; and p>ny

and {(i>p and nj<ny) or (i<p and n>my)) and (i>p or ni<ny)

: E\gy &¢ %\
n, nj ny n N ny
i>n; and p<n, i>n; and p>ny
and (i<p or ny>1y) and {(i>p and ny<ny) oF (i<p and n>Ty))
(@) (b)

Fig. 7. The intersecting conditions for split CTVM problems. (a) Inter-
secting conditions between V;; and V,; ., , forj = 1 or 3, (b) Intersecting
conditions between V;; and V,,; forj = 1 or 3.

ments is given by

E,= 2 u ZIV,,Sanm+1 v,
i=1 =
b

(26)

where N, is the maximum number of nets that are not
allowed to be embedded on any layer. The total energy
function E for n-net split CTVM problems is given by

E = A/2E, + BEs + BE¢ + BE, 27

where A and B are constant coefficients.

The motion equation of processing element ij for the
clockwise route assignment (j = 1 or 3) of net i in the
n-net problem with the hill-climbing heuristic is given by

dU;; S
— =4l 2V, -1
dt <q=l “ )

=B Z (fln, D (P npg(p, Dg i, 1y)

p#i

+f(ni7 i)g(np’ P)(g(P» l) + g("i? np)))ij+l

—B 2 (8G.m)f(p. ) (8P, D) + gl )

pFi

+ g(lv ni)g(nps P)) ij+ 1
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TABLE 11
SUMMARY OF SIMULATION RESULTS FOR THE SPLIT CTVM PROBLEMS

Convergence to
Global Minimum

Convergence to Global Minimum
or Local Minimum

Average No. of

Average No. of Average No. of

No. of Nets Iteration Iteration Non-Assigned

n Steps Frequency Steps Frequency Nets
Problem 8 20 129.1 84 % 189.3 100% 1.6
Problem 9 30 125.4 74% 224 .4 100% 1.4
Problem 10 40 120.6 83% 186.9 100% 1.3
Problem 11 50 109.8 100 % 109.8 100% 1.0
Problem 12 60 116.9 99 % 120.9 100% 1.0
Problem 13 70 116.7 100% 116.7 100% 1.0
Problem 14 80 115.3 60% 271.7 100 % 1.7

=B 2 (f, D f (np. (80, P)E (. )

p*EI
+ g(p, D)gn;, ny)) + g (my, Hg(p, n,) (&G, p)

+ g(np’ ni))) ij

=B 2 (g0 m)f 0 p)(g(p. 1) + glni m)

p#i

+ g, n)g(p, n,)(g(p, i)gn;, ny)

5
+ g, p)g(n, n))V,; + Ch < Zl V,,,>.
P
(28)

The motion equation of processing element ij for the
counterclockwise route assignment (j = 2 or 4) of net i
is given by

dU; :
—l =4l 2V, -1
dt <q:l a >

= B X (fli. n)fnp. P)g (i, P)gry, 1)
p*i

+ [, n)g(p, np)(g(i, p) + gy, )NV,

~ B X (g(n. )f 01, p) (80 p) + gy n))

p*i

+ g(nis l)g(p5 np))ij—l

=B X (f,n)f(p, m)(8(p, g (ni np)
pri

+ g(l’ p)g(nps ni)) + f(l’ ni)g(npv P)

“(g(p, i) + gni, npNV,,

- B pgl (g(ni’ l)f(p7 np)(g(i, p) + g(np, n[))

pFEI
+ g(nia i)g(nps P)(g(Pa i)g(nia np)
5
+ g, p) gy n)V,; + Ch (El 14,,>.

(29)

The motion equation of the fifth processing element for
net i is given by

5
dU;s
B Al 2V, -1
dt <q=| “ >

5
+ Ch<2 V,,,>.
g=1

(30

n
— Bu Zl Vys — Now + 1
P

p#Ei

2. Simulation Results and Discussion for Split CTVM
Problems

The simulator based on the procedure in Section II.3.
has been developed with the motion equations in order to
verify our algorithm. We examined the global and local
minimum convergence in simulated problems. Because
the global minimum solutions have only one via, we as-
signed N, as | for the global minimum solutions, and as
5 for the local minimum solutions.

The newly created seven problems shown in Table 11
were simulated. Figs. 8-10 show one global minimum so-
lution for three of the problems respectively. Our algo-
rithm found several other solutions in the same problems
from the different initial values of U;;(#). Table II sum-
marizes the average number of iteration steps and the con-
vergence frequency in the global/local minimum solu-
tions, and the average number of nets that could not be
assigned in any solutions. For each problem, 100 simu-
lation runs were also performed from the different initial
values of U;;(r). In split CTVM problems, our simulation
results empirically show that our parallel algorithm can
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(b)

Fig. 8. A simulation result for Problem 8. (a) The convergence of 20 x5
processing elements to a solution. (b) The corresponding routing solution.

(b)

Fig. 9. A simulation result for Problem 11. (a) The convergence of 50 x5
processing elements to a solution. (b) The corresponding routing solution.

embed the maximum number of nets in the two-layer
channel in a nearly constant time with 5n processors.

IV. ConcLusiON

Parallel algorithms for split RTVM problems and for
split CTVM problems in two-layer channels are proposed
in this paper, based on two-dimensional neural network
models. The simulation results empirically show that our
algorithms can embed the maximum number of nets in
two-layer channels in a nearly constant time, when they
run on a parallel machine. The algorithms can be easily
modified and extended for solving more-than-two-layer
channel problems.

Fig. 10. A simulation result for Problem 14. (a) The convergence of 80 x5
processing elements to a solution. (b) The correponding routing solution.
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