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Optimization Neural Networks for the
Segmentation of Magnetic Resonance Images

S.C. Amartur, D. Piraino, and Y. Takefuji

Abstract— Segmentation of the images obtained from mag-
netic resonance imaging (MRI) is an important step in the
visualization of soft tissues in the human body. The multispectral
nature of the
MRI has been exploited in the past to obtain better perfor-
mance in the segmentation process. The new emerging field
of artificial neural networks promises to provide unique solu-
tions for the pattern classification of medical images. In this
preliminary study, we report the application of Hopfield neu-
ral network for the multispectral unsupervised classification of
MR images. We have used winner-take-all neurons to obtain
a crisp classification map using proton density-weighted and
T2-weighted images in the head. The preliminary studies indicate
that the number of iterations to reach “good” solutions was nearly
constant with the number of clusters chosen for the problem.

I. INTRODUCTION

AGNETIC resonance imaging (MRI) has an unique

advantage over other modalities in that it can provide
images of tissues with a variety of contrast based on a simple
adjustment of parameters which define the experiment. In a
sense the images obtained from MRI resemble the multiband
or multispectral images of the earth obtained from the remote
sensing satellites. The unique advantages of multicontrast
images obtained from MRI for the automated segmentation
of classification of tissues is well known and has been suc-
cessfully employed in the past (also known in the literature
as sensor fusion) [2]-[8]. The analysis of such multicontrast
images can be achieved by using parametric or nonparametric
supervised methods or with unsupervised methods [1]. The
supervised classification methods employ a training set con-
sisting of features with known a priori probability distributions
to train the algorithm (Bayesian approach). The unsupervised
methods classify samples without the aid of a training set. The
algorithm finds natural groupings or homogeneous clusters in
a pattern set based on a criteria defining some property such
as intensity or texture. The disadvantage of the supervised
methods is the need for the generation of training sets and
the associated human interaction and that of the unsupervised
methods is its ignorance of the relationships between different
objects and a tendency to generate too many clusters or
groupings which can be misleading. A hybrid scheme which
uses an unsupervised algorithm to form clusters in the first
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stage and use the statistical properties within the clusters
provided in the first stage to train a supervised algorithm in
the second stage has been reported recently [8].

Artificial neural networks (ANN) are relatively new com-
puting systems whose architecture is made of massive number
of densely interconnected simple analog processing elements.
The processing is done in parallel either in a synchronous
or asynchronous mode. The architecture of ANN is modeled
after the human nervous system with some unique processing
capabilities which are not found in the conventional, sequential
computing systems. One such processing task in which the
ANN excels is in the area of pattern recognition. An excellent
review of this new technology can be found in [9]. A few pa-
pers on the application of ANN for medical image processing
have appeared in the recent past [10]-[12]. All the reported
papers have used a specific ANN architecture known in the
literature as generalized perceptrons (GP) or back propagation
networks (BPN). These networks use a training set very similar
to the conventional supervised methods mentioned earlier with
the exception that, no a priori probabilistic knowledge is
required (similar to the conventional nonparametric methods).
Another neural architecture which has attracted consider-
able attention in the recent past was proposed by Hopfield
[13]-[16]. This type of network has been proposed for the
unsupervised classification of patterns [17]-[18]. In [18], the
images are modeled as a Markov random field and assigns
region labels or classes to pixels by minimizing the expected
percentage of misclassified pixels on a Hopfield network.

In this paper we will outline a scheme for the crisp un-
supervised classification of MRI images based on energy
minimization using the Hopfield network. An energy function
will be formulated which allows for the hyperellipsoidal
cluster distribution in the pattern space [1]. We present results
from subjects with a normal and an abnormal physiological
condition. The paper concludes with some discussion and
comments and a brief summary of future work.

II. HOPFIELD NEURAL NETWORK

Hopfield network for the optimization application consists
of many interconnected neuron elements. The network mini-
mizes an energy function of the form [13]-(16]

N N N

E=Y3 TuaWVi-> LV €]

k=11=1 k=1

where N is the number of neurons, Vj is the output of kth
neuron, I is the bias term, and T}, is the interconnection
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weight between kth and [th neuron. The minimization is
achieved by solving a set of motion equations satisfying

O, /ot = —OE |V, @)

where U; is the input of ith neuron. If the input—output
function of the neuron is monotonically increasing and the
system satisfies (2), the energy continuously reduces as a
function of time and the system converges to a local minimum
(in a stochastic sense), also known as an attractor basin or a
fixed point. The energy landscape in general has more than
one local minimum due to the nonconvex nature of the energy
surface. (The Hessian matrix H of E: H,; = 9*E/dV; 8V},
in indefinite.) The energy function defined in (1) is slightly
different from the one formulated by Hopfield in that, the
decay term has been removed for convergence reasons, see the
Appendix for a proof using purely deterministic arguments.
If a problem can be cast in the form of or mapped to a
minimization of Hopfield energy function, a neural network
can be realized to obtain a reasonably “good” solution (deep
in the energy landscape). To ensure this, one may have to find
solutions from different initial states and pick the best among
them. Only under some special situations the global minimum
can be reached from arbitrary initial states [19].

IlI. ANN FOR CLASSIFICATION

A. Mapping

In our study, we follow the ideas proposed in reference [17].
Our objective here is to assign N pixels of P features among
M classes (M™ /M! possible ways) such that the assignment
of the pixels minimizes a criterion function. The criterion
function can be based on a metric measure between a pixel to a
class or a nonmetric similarity measure indicating how close a
pixel is with other members within a class. The conventional
K-means algorithm has a time complexity of O(NMP). A
multicomputer version of the algorithm has been proposed
with a time complexity of O(P +log NM) and a space
complexity of O(NM) [20]. The generalized distance measure
between the kth pixel and the centroid of class [ is given by

R = X0~ X 4 o)

where X, is the P-dimensional feature vector of kth pixel,
A; is a P x P positive definite weighting matrix, X is the
P-dimensional centroid of class [, and || X|| 4 = X"AX. If
A; is an identity matrix, the distance measure is Euclidian
and the resulting clusters will be restricted to hyperspherical
distributions [1). If A; = ¥,, the covariance matrix of class
[, the distance measure is Mahalanobis, which allows for
hyperellipsoidal cluster distributions. The weighted inner-
product norm also provides invariance to linear transformation
(scaling) of features in the images [1]. The overall energy or
cost function E to be minimized is given by
N N
E=1/23"3" RuVi. )
k=11=1

Note that the distance measure Ry, is an implicit function of
Vit and is changing at each iteration with the new estimation
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of the weighting matrix A;. By applying the relation in (2),
we get a set of equations for the neuronal dynamics given by

dUki/dt = =Ry Viy )

where Uy, and Vj,; are the input and output of klth neuron,
respectively. The input—output function for the kth row (to
assign a label n to the kth pixel) is given by

Vinlt+1) =1 if Uk, = MAX[Un(t); V]  (6)
Vi(t+1) =0 otherwise

where t is the iteration step. The use of maximum neuron
provides a crisp classification as opposed to some alternative
methods which provide a fuzzy classification of the data. The
monotonicity property of the maximum neuron follows from
the fact that it is equivalent to a MaCulloch—Pitts neuron with
a dynamic threshold equal to Uj,. The rapid convergence
property of this type of neuron has been reported earlier [16].
Another advantage of using maximum neuron is the elimina-
tion of gain parameters in the motion equation and hence the
need for ad hoc selection procedures (the energy function has
only one component). The neural architecture consists of a grid
of N x M neurons with each column representing a class and
cach row representing a pixel thus, having a space complexity
of O(MN). The system inputs are initialized to random values
(mean zero and a standard deviation of 0.1) and the dynamical
equations (5) are allowed to evolve as a function of time. The
network is said to have reached convergence if all the neurons
have negligible input-output activity (dU/dt = 0). A factor of
four saving in space can be attained by working with an image
half the resolution as the original.

The algorithm was tested on a sequential digital computer
(microVAX, Digital Equipment Corporation, Inc.) and an array
processor (Sky computers, Inc., Lowell, MA) as follows.

1) Initialize the input of neurons to random values (which
amounts to a random assignment of N pixels to M
classes).

2) Apply the input-output relation given in (6) to obtain
the new output values for each neuron, establishing the
assignment of pixels to classes.

3) Compute the centroid (or class means) X; and the
covariance matrix ; for class [ as follows:

N

71 = ,:Z X Vi /nl (7)
k=1

ZI = [Z Vk,l(Xk —71)(Xk —7[)7‘:'/(’”[ - 1)

k=1
®

where n; is the number of pixels in class I. The co-
variance matrix is normalized by dividing each of its
element with (det [ZZ,])UP,

4) Solve the set of differential equations in (5) using Euler’s
approximation to update the inputs to each neuron

Uk[(t+ 1) = Uk[(t)-l-dUkl/dt. (9)
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Fig. 1.
with 5 clusters; (d) classification with 7 clusters; (e) T-weighted image at level 2; (f) proton density-weighted image at level 2;
(g) classification with 5 clusters. An arrow in (b) shows a region with low signal due to inhomogeneity of the radiofrequency
coil. The tissues identified in (c) and (g) are (A) gray matter: (B) white matter; (C) cerebral spinal fluid; (D) background region;
and (E) subcutaneous fat.

5) If there is sufficient activity (significant change in the
inputs as determined by a preset threshold) in the input
of each neuron then, repeat from step 2) else, terminate.

If the number of clusters chosen is too large, the algorithm

may tend to overclassify the image data into many disjoint
regions. This may require a merging of subregions or form a
super-clusters based on a similarity or a dissimilarity criterion.
One such dissimilarity criterion which has been suggested is
defined as [21]

Disimilarity = [TL,‘HX,’ - Y;J

‘+II,J||7J’ —YU

/(N =1)
(10)

where N is the total number of pixels, n; and n; are the
number of pixels in classes ¢ and j, and X;; is the combined
mean for the two classes given by

X,j = (77,171' + njfj)/(jn,' + n,j). (11)

To ensure that a pixel is assigned to utmost one label, the
energy function (4) is usually augmented with a constraint re-
lation [13]. This function is automatically handled by the struc-
ture of the maximum neuron used in our study which does not
violate this constraint. The other conflicting situation of a class

MR head images of a normal subject (a) To-weighted at level 1; (b) proton density-weighted at level 1: (c) classification

being completely vacant or no pixels assigned to a class, never
occurred in our study, supporting the observation made in [17]
thus, the solution at each iteration is a valid solution. Notice
that except for the input—output equation (6), all other equa-
tions are amenable for implementation on a fast pipe-line array
processor. The parallel hardware realization of winner-take-all
neuron is an important issue in neural networks. Even though
the algorithm was simulated on a sequential machine, the neu-
ral network implementation of the algorithm is fully parallel
and can be realized with analog processing elements hence, is
expected to provide very rapid solutions to the problem.

B. Postclassification Filtering

Due to the spectral variability in the MR data, the classified
image may exhibit a salt-and-pepper appearance. A majority
filter was used to reduce this artifact [22]. The filter consists of
a moving window or mask which is passed over the classified
image. The new assignment of label for the center pixel is the
label associated with the majority class within the window.
Multiple iterations can be employed to control the amount of
smoothness at the expense of losing some small structures. As
an alternative to the postprocessing, the smoothing operation
described above can be incorporated within the classification
process with suitable augmentation of the energy function.
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Fig. 1.

IV. RESULTS AND DISCUSSION

We present results obtained with images acquired on a
patient with normal physiology and one example of a patient
diagnosed with a known pathology. Fig. 1(a) and (b) are the
T>-weighted (TR = 4000 ms, TE = 90 ms) and a proton
density-weighted (TR = 4000 ms, TE = 15 ms) image in
the brain of a normal volunteer. The cerebral spinal fluid
(CSF) appear bright in the T-weighted image and dark in the
proton-weighted image. The proton density-weighted image
on the other hand shows good differentiation between the gray
and white matter with the gray matter slightly brighter when
compared with the white matter. The number of clusters or the
cluster size in a given image set is usually not known a priori
in practice (cluster validity). A measure for the “goodness” of
classification is the cluster size which provides the minimum
E when the network reaches equilibrium (or flattens out).
Fig. 1(c)—(d) show the classification results with cluster sizes
equal to 5 and 7, respectively. The classified images were
filtered using a majority filter with one iteration. The different
class labels have been assigned separate gray levels in the
classification map. Table I gives the value of E at equilibrium
for different cluster sizes.

From Table 1, a cluster size of 7 gives the least energy at
equilibrium and hence should be optimum. The corresponding
classification map [Fig. 1(d)] provides an accurate grouping
of different homogeneous regions. However, there is a need

Continued

TABLE 1

Cluster size E at equilibrium

DN W
o
~
o«

x

for a merger of group members belonging to the same tissue.
From a human observer point of view, a choice of 5 clusters
[Fig. 1(c)] seem to provide a more meaningful classification
without the need for a merging step. The anatomical iden-
tification of regions [Fig. 1(c)] corresponding to the assigned
labels are the background, CSF, gray matter, white matter, and
subcutaneous fat. Nearly symmetric nature of the gray-white
matter tissues in the classified image is indicative of the normal
physiological condition of the subject. The algorithm has
misclassified tissues in some regions of the image due to the
nonstationary response of the image acquisition (signal gain
variation). Fig. 1(e) and 1(f) are the T>-weighted and proton
density-weighted images of the same patient at a different
level in the brain. The corresponding classification map with
5 clusters is shown in Fig. 1(g).

Fig. 2(a) and (b) are the 75-weighted (TR = 2500 ms,
TE = 90 ms), and proton density-weighted (TR = 2500 ms,
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Fig. 2.
(c) classification with 5 clusters. Metastases are shown with long arrows and the edema is shown with small arrows in (a) and (b).
An open arrow in (b) shows a region with low signal due to inhomogeneity of the radiofrequency coil. The tissues identified in (c)
are (A) white matter; (B) cerbral spinal fluid: (C) subcutaneous fat: (D) metastases and edema; (E) background region.

TE = 15 ms) images, respectively, from a patient diagnosed
with a melanoma metastatic to the brain. The metastases
are seen as two hyperintense masses in both images. The
proton density weighted and T>-weighted images also show
an abnormally bright region in the white matter between the
two metastatic lesions, thought to be due to edema caused
by the mass effect. Note also the signal variation within the
metastases in proton density-weighted image. Fig. 2(c) is the
classification map with 5 clusters. From the map we can see
that the metastatic regions have been well delineated along
with the white matter and CSF in the lateral ventricles. The
algorithm has failed to pick the gray matter seen clearly in
the proton density-weighted image as a separate cluster. This
may be attributed to the relatively small number of pixels
associated with the gray matter and the possible nearness of
its cluster in the feature space with another cluster belonging
to a different tissue with a large numerical superiority [1].
Increasing the cluster size followed by a merging operation
may alleviate this problem. Notice also the large space clas-
sified as CSF [Fig. 2(c)], not evident in the feature images.
This may be attributed to the intensity attenuation in this
region (note that attenuation of intensity from the top right
corner towards the bottom left corner in the proton density-
weighted image) due to inhomogeneity or change in sensitivity
of the radiofrequency coil. This imaging artifact may have to

MR head images of a subject with a known pathology (a) T»-weighted image; (b) proton density-weighted image;

be corrected before the application of neural net classifier.

It was experimentally found that the network reaches equi-
librium or convergence for the two cases presented here within
100 iterations for cluster sizes up to 15. Hence, the time for
convergence is the order of 100 7 where 7 is the time constant
of each analog processing element (microseconds). The near
constancy of convergence time with the problem size is an
important property which indicates that the effective time
complexity is close to O(1). The performance of the network
is mainly dictated by the choice of the energy function or cost
criterion. The criterion employed in this study provides “good”
classification for images with features which are well separated
and exhibit nonoverlapping clusters. The feature elements in
the acquired data set may in general be highly correlated.
Techniques are available to de-correlate the feature elements
for better classification results [1].

V. CONCLUSION

This preliminary study has demonstrated the applicability
of Hopfield net for the tissue classification in MRI. The
quantitative performance study was made difficult by the lack
of a gold standard to compare with nor the availability of
ground truth for verification of the results. We have relied
upon the human experts for the performance evaluation. The
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technique is at present not robust to handle images corrupted
by non-stationary sensitivity of the image acquisition and
partial volume effects. The availability of dedicated neural net
hardware in the future is expected to provide the laxury of
running the network with different initial states to obtain the
“best” classification. The search for global minimum using the
Hopfield neural networks is still an open problem.

The future work will focus in the following directions:
a) account for the non-stationary response of the image acqui-
sition; b) model tissues as mixture of many classes with the
use of fuzzy segmentation; c) use of regions from the classified
map obtained from the technique presented in this paper as a
training pattern set for a second stage consisting of a back
propagation network; d) incorporate additional constraints to
the energy function.

APPENDIX

Hopfield formulated the Liapunov energy function [13]-
[16]:

N N N
E=1/2) 3 TuViVi- > LVi
k=1

k=11=1
N Vi(t)
1A (1R, / TVmave) ()
=1 0
~ Vi(t)
= Ep tINY (/R [ o) o3
=1 0

where g(-) is the input-output function for the neuron. The
motion equation for the ith neuron is given by

dU;/dt = 0Ep /dV; — U; /7 (14)

where 7 is a time constant. Using the chain rule for differ-
entiation

N
dE/dt =Y (dU;/dt)(dV;/dU;)(IE3V;).

i=1

(15)

For very large A (an assumption made to simplify the map-
ping), 0E/0V; = OEp/dV;. Hence,

N N
dE/dt = =" (dU;/dt)*dV;/dU; - > Wi/
=1 i=1
(dV;/dU;)(dU;/dt)  using (14).  (16)
= —i(dUi/dt)Q(dM/dUi)
- 2(1/27)(dvi/dUi)(dU3/dt). a7

The first summation term is always positive due to the mono-
tonic increasing property of the input—output function. The
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second summation term in (17) which arises due to the decay
term or the last term in (13), can be either positive or negative.
Hence, the overall change in E can be either positive or
negative. However, if the decay term is removed from the
energy function, the energy change is strictly negative, proving
the convergence with the use of modified Hopfield energy
function.
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