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Notice further that
1€=T*11<T"=[1 *]
*

and

W=T’WT=[W“K” S L)
* WKy x Wy

Hence
o2 2
G=Y W,K;= Y W,K;=G,=0.032428.
i=1 i=1

On comparing the above result with that in [2, sect. IV], it is
observed that our G is slightly smaller than the optimized unit
noise in [2], which is 0.034 951. The small difference may be due
to the truncation method used in [2] to obtain matrices K and
W, which may have resulted in an imperfect realization. The
basic problem with the Roesser realization used in [2] is that it is
of higher order than necessary, which has resulted in more
multipliers and, therefore, more noise.

REFERENCES

[11 W.-S. Lu and A. Antoniou, “Synthesis of 2-D state-space fixed-point
digital-filter structures with minimum roundoff noise,” IEEE Trans.
Circuits Syst., vol. CAS-33, pp. 965-973, Oct. 1986.

[2] T. Hinamoto, T. Hamanaka, and S. Maekawa, “A generalized study on
the synthesis of 2-D state-space digital filters with minimum roundoff
noise,” IEEE Trans. Circuits Syst., vol. CAS-35, pp. 10371042, Aug.
1988.

3] T.Lin, M. Kawamata, and T. Higuchi, “A unified study on the roundoff
noise in 2-D state-space digital filters,” JEEE Trans. Circuits Syst., vol.
CAS-33, pp. 724-730, July 1986.

A Super-Parallel Sorting Algorithm Based on
Neural Networks

YOSHIYASU TAKEFUJI anp KUO-CHUN LEE

Abstract —A new neural network parallel algorithm for sorting prob-
lems is presented in this paper. The propesed algorithm using 0(n?)
processors requires two and only two steps, not depending on the size of
the problem, while the conventional parallel sorting algorithm using
O(n) processors proposed by Leighton needs the computation time
O(log n). A set of simulation results substantiates the proposed algo-
rithm. The hardware system based on the proposed parallel algorithm is
also presented in this paper.

I. INTRODUCTION

Sorting is one of the fundamental operations in computer
science and engineering. The conventional sequential algorithm
based on comparisons of pairs of elements must have complex-
ity: O(nlogn). In 1968, Batcher introduced a paraliel sorting
algorithm with time complexity O(log”n) using 252k (k +1)
comparators where n=2% are the unsorted elements [11.
Leighton shows the algorithm using » processors in time
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O(log n) [2]. Alon and Azar have claimed @(log n /log(1 + p/n)
algorithms using p processors [3].

Since the advent of VLSI technology, the hardware cost has
become negligible. In this paper a new parallel distributed
algorithm to sort a list of n unsorted elements is presented. The
algorithm using O(n?) processors requires two and only two
iteration steps regardless of the size of the problem.

Processors used in the new algorithm are called neurons
(where they perform the function of a simplified biological
neuron), or binary neurons. Binary neurons have been success-
fully used for solving graph planarization problems [4] and tiling
problems [5]. The output of the binary neurons is given by

1, ifU>0
v=rfuy={" "%
(= f) {0, otherwise

ey

where ¥, is the output of the ith neuron and U is the input to
the ith neuron. Interconnection weights, called synaptic weights,
between the neurons are determined by the predefined energy
function E(V), which describes the penalty quantity where V is
an n-dimensional vector: ¥V =(V}, V5, -, V).

Before discussing the details of our method, first we are going
to show how the neural network can perform the parallel
gradient descent method. As long as the motion equation of the
binary neurons is given by dU, /dt = — dE /dV;, the predefined
energy function E monotonically decreases. The following proofs
claim that the state of our neural network is guaranteed to
converge to the local minimum under the discrete numerical
simulation.

Proofs:
dE dV; dE
PR
dv,( dy;
5 (-F)
ay,
where dE /dV is replaced by (— —dT)

d

ay; dv, U
- w)@)
av,\(du\?
- )%
Let dV{t)/dU(t) be (Ve + A= VA /ULt + Ar)— ULL)).

Let dU(t)/dt be (U(t + At)- U(#)). 1t is necessary and suffi-
cient to consider the following seven cases:

1) Ut + A)> ULn), Ut + A1) <0, and Ut)<0
2) Ut + A > U, Ut + A2 0, and U1) <0
3) Ut + At)> U(t), Ut + At)> 0, and Uu)=0
4) Ut + Ay <U(n), Ut + A) >0, and U()>0
5) Ut + At) <U(1), Ut + A1) <0, and Ut)>0
6) Ut + A <U(1), U{t + A <0, and U(r) <0
7 Ut + At)y=Ufz).

If Condition 7) is satisfied, then dU, /dt =0 must be zero so
that dE /dt = 0.
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If 1), 3), 4, or 6) is satisfied, then dV,/dU, must be zero,
because of

v, V(t+A)-V(0)
av;~ e+ A0 -U(o)

0

=——————— sothat dE/dt =0.
nonzero number

If 2) is satisfied, then dV; /dU; must be positive, because of
AV, Vit +At)-V{(t)
dU,  U(t+Ar) - U(t)
1

=———————, sothat dE/dt <0.
positive number

If 5) is satisfied, then dV; /dU; must be also positive, because of
v, Vi(t+A)-Vi(1)

U, U(t+Ar)-U(t)
-1

=———, sothat dE/dt <0.
negative number

We can conclude that the energy function E monotonically
decreases as long as the motion equation of the binary neurons
is given by dU; /dt = — dE /dV. Q.E.D.

II. SorTING NEURAL NETWORKS

N —1 positive integers, N, N, -+, N,_,, and 0 (zero)—which
is a dummy number—are given where the subscript i indicates
the location of the register i that contains the number N,. The
goal of sorting is to find a permutation (m,7,, -, m,_;) such
that 0 <N, <N, <--- <N, . Inour new sorting, an nXn
neural network array is provided where each row and column
corresponds to the location of a register and the position of
permuted order, respectively. The n X n array actually repre-
sents the directed adjacency matrix where one and only one
neuron in the ith row (i=1,--+,n) will be fired in order to
determine the sorting order between N, and N, . Note that
N,,M must be greater than N,,, but it must be the nearest
number to N,

The predefined energy function based on our neural repre-
sentation is given by

n n n
E= 3} Y o L f(Ny, Nx)VxV,
X=1Y==X(NY_NX)1'¢X v rRTXEXY
n n A
- —Vyy- (2)
XZ=1Y¢X(NY—NX) -

Instead of explaining (2), it is much easier to understand the
behavior of the neural network using the motion equation of the
neuron. The motion equation of the neuron in the Yth column
and in the X'th row is derived from the necessary condition of
the introduced parallel gradient descent method: dUy, /dt =
—~dE /dVyy. Therefore, from (2), it is given by

dUyy A n
X Ny, NI, —1
Pl vy s (Exf( v NV ©)
where
_ {0, ifL<R
f(L,R)= { 1, otherwise. “

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 1990

T T T T T
o 300 B
K o : at=10"°
° a at=10"%
> -4
= 2001 a at=10 N
S
IS
2
e 100 4
3
=
B‘~
ol & - B R/ Be-FB— i
1 1 1 1 L
20 40 60 80 100
The Size of Problems
(a)
T T T T T
6rO0—606—06—6—6—6—6—"6—0—90 -
o 14 E
c
2
s 127 o : ats=10" b
S -5
2 10F ] at=10 .,
- a : at=107*
= a - .
e
L
e 6F 4
3
=
4 - -
O-0-0-0-0-08--8--8-0-0
2F & A A A A A A A A A
1 1 1 1 1
20 40 60 80 100
The Size of Problems
(b)
Fig. 1. The relationship between the number of iterations and the problem

size. (a) Based on (3). (b) Based on (7).

It is very important that all of the initial values at £ =0 for U};
(i=1,--+,n),(j=1,--+,n) are set to small negative numbers. In
(3), the term (Zf(Ny, N;Vy,; —1) forces one and only one neu-
ron to fire per row. When N, is greater than Ny, (3) at t=0
becomes positive because V;; (i=1,"-+,n), (j=1,---,n) are
zeros. The function of f(Ny, N,) plays a key role in our method
to determine which permutation connection should remain and
which should be removed. In other words, only if N, is greater
than N, and the smallest number among N, (i=1,-:-,n—1),
the term Lf(Ny, NVy,; is zero so that (3) will be still positive;
otherwise it will be negative.

We have already proved that the state of the system is
guaranteed to converge to the local minimum. The A4 /(Ny —
Ny) term and the function f(Ny, N;) in (3) will guarantee the
state of the system to converge to the global minimum. In order
to achieve the global minimum convergence, remember all of
the initial values for the inputs U; (i=1,---,n), (j=1,--,n)
must be set to small negative numbers.

Proofs:
Consider the neuron in the Yth column and in the X'th row.
The initial values of U; (i=1,---,n), (j=1,-- -, n) are negative

at ¢ =0 so that all of the V; are zeros, because of the function
of binary neurons in (1). If all of the ¥}; are zeros, then (3) must
be positive as long as the value of (Ny — Ny) is positive. If the
value of (N, — N, ) is negative, (3) will be negative so that the
neuron is not fired. We can conclude that at ¢ =0 the negative
initial values of Uj; (i=1,-+-,n), (j=1,---,n) forces the neu-
rons whose number is greater than Ny to fire.
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Fig. 2. The convergence of a 10x 10 sorting neural network to a solution.
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Fig. 3. A parallel sorting neural network.



1428

-Vx Vxi Vxj

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 37, NO. 11, NOVEMBER 1990

Vxn

|
" Sy; -+ 'r‘—sv,' I ‘—Sya

|
O N

Fig. 4. A circuit diagram of the neuron XY.

After the first iteration, one and only one neuron among fired
neurons whose number must be not only greater than N, but
also be the smallest number is forced to remain fired, because
the product of f(Ny,N;) and Vy; (i=1,-,n) in (3) enables the
neuron in the Yth column and in the Xth row to unfire as long
as Ny > N, is satisfied. If the N, is the smallest number, then
the term £ f(Ny, N;)Vy,; will be zero so that the neuron is forced
to remain fired. Consequently, our method only requires two
iteration steps to converge to the global minimum as long as the
appropriate number is assigned to At, where it must be greater
than the absolute values of the initial U; (i=1,---,n), (j=
1,---,n) at time ¢t =0.

Q.ED.

Our numerical simulations of (3) were based on the first-order
Euler method; Uyy(t + At) = Uy (1) + AUy At, where AUy, is
dUyy /dt. Fig. 1(a) shows the relationship between the size of
the problems and the number of iterations for the global mini-
mum convergence where At was varied 107% to 107% and the
initial values of Uy, were set to 1,/70000. Unsorted positive
numbers were generated randomly. When the absolute values of
the initial U; (i=1,---,n) (j=1,-+-,n) are greater than At,
more than two iterations are required. When At is greater than
those, the state of the system always converges to the global
minimum with two and only two iteration steps.

The energy function in (2) follows the quadratic form:

™=
™M=
M=

E= Txy.iiVxvVi

s
M=

n
it Y Vavlxy. (5)
1Y=1i X=1v=1

1

I

1j

Therefore, the conductance matrix Tyy ;; is given by

A
Txy,ij == m(l“ SXY)ath( Nth)(l_ 5Xj) (6)

where 8, is 1 if p =g, and 0 otherwise.

In order to remove the expensive term A /(N, — N, ) from
(6), which must use the variable conductance devices, the follow-
ing motion equation is created:

dUyy

dt =_f(Ny,Nx) Zf(NY‘IVj)VXj—l'

J*X

Q)

R
R fUxy)
= Uxy
|t ] . ]
Sij Sij =Sii
i<j i>j
Fig. 5. A comparator signal and an analog switch.

Hence the new conductance matrix is given by

Txy‘u == f(Nnyx)(l - SXY)BXi'f( Ny, N;)(l - 6Xj)' (8)

It is very important to notice that (8) does not require the
variable conductance devices. Fig. 1(b) shows the relationship
between the number of iterations and the size of problems
based on (8). The number of iteration steps can be given by the
following formula:

+2 (9)

o |U;(0)]
The number of iteration steps = Integer “aAr

where Ui].(O) is the initial value at time t=0(=1,---,n and
j=1,---,n).

The sorting neural network based on (8) needs n? binary
neurons and n(n—1)/2 comparators to sort n—1 unsorted
elements. Fig. 2 shows a simple example to sort nine numbers
(44,3,62,33,57,91,37,82,13) using the 10X 10 neural network
array. The simulation result indicates 0 <3<13<33<37<44
<57<62<82<91.

We have investigated the problem size up to n =1000. All of
our results showed that the computation time is constant, namely,
two-step, when the following condition is satisfied:

U;(0) <At i=1,---,n; j=1,+-,n.
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Fig. 3 depicts the architecture of the proposed parallel sorting
system based on (8) where it is composed of n? neurons and
n(n—1)/2 comparators. Fig. 4 shows the details of the neuron
XY where the circuit is not yet minimized for the actual imple-
mentation. In Fig. 4, the operational amplifier on the first stage
sums all of the inputs, which satisfies the following equation:
dUyy —_R ( _V_X

R

Y f(Ny,Nx)f(Ny,N;)

Vxi _
j=1 Ron

dt 2

(10)
on
where R, is the on-resistance when a single analog switch is
on.
The second operational amplifier performs integration of
dUyy / dt, which is given by the following equation:

1 (dUyy
"R, ( di )d’

The third operational amplifier generates Uy, where Uyy =
—Uj}y. In the last stage, f(Uyy) follows the nondecreasing
function.

Fig. 5 shows how to control the signal from the comparator to
the analog switch. Remember that n(n —1)/2 comparators are
required for sorting n —1 numbers.

e
UXY_

an

I1I.

The proposed parallel algorithm requires two and only two
iteration steps to sort unsorted elements regardless of the prob-
lem size. The system based on the proposed algorithm uses n?
neurons and n(n —1)/2 comparators for n —1 sorting problems.

CONCLUSION
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On the Explicit Formulas for the Elements in
Low-Pass Ladder Filters

PAULO ANTONIO MARIOTTO

Abstract —As a contribution in searching the explicit formulas for the
elliptic-function filter, this paper develops formulas by which the ele-
ments of a resistively terminated, linear low-pass LC ladder filter can
be expressed in terms of the filter’s natural frequencies as well as its loss
poles and zeros. After a general approach to the problem, a special case
illustrates the formulas.
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Lossless network inserted between source and load.
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Insertion loss of some low-pass filters.

I. INTRODUCTION

The modern filter synthesis, given a prescribed insertion-loss
between a resistive source and a resistive load, is a classical
procedure (which started with Darlington’s work [1]) presented
in many texts on network synthesis [2]. The method consists of,
given the insertion-loss function, determining the squared-mag-
nitude |p(jw)|? of the reflection coefficient p(p), then getting a
stable p( p), and, finally, deriving the corresponding driving-point
impedance Z(p). From this Z(p), a lossless network terminated
by a resistance can be found, satisfying the prescribed insertion-
loss.

For some special data, the resulting Z(p) can be developed in
continued-fraction expansion, thus yielding a network in ladder
form. Some work in the past obtained explicit formulas for the
elements in ladder form for some configurations of the poles
and zeros of p(p) but under the assumption of “all points of
infinite loss at infinity” [3]-[5]. Orchard [6] has given explicit
formulas for the elements allowing finite frequencies of infinite
loss but starting with the driving-point impedance of the unter-
minated lossless filter. In the present paper, a compromise is
achieved between these two approaches.

By using the so-called Newton’s formulas [7], which relate the
coefficients and roots of polynomials, it is shown how to express
Orchard’s formulas as functions of the poles and zeros of p(p),
as well as the frequencies of infinite loss. Further, as the
formulas are expressed by determinants, it is shown how to
linearly combine their columns so as to get more compact
determinants. A numerical example follows the mathematical
derivation.

II. PRELIMINARIES
Let

p(p)=G(p)/H(p) N

be the reflection coefficient at the input of a resistively termi-
nated lossless network, as illustrated in Fig. 1, where

H(p)=h0p"+h1p”‘1+h2p"‘2+-~- +h, 2)

is a Hurwitz polynomial on the complex frequency variable p
and where

©)

with 0 < g, < h and |g,| < h,,. It is also assumed that [p(jw)l <1
for all w.

G(p)=gep"+ &, p" '+ + 8,
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