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estimate may be obtained if the following *‘stability radius" type of
question is answered: ‘‘Given A € D determine the smallest » such
that for | AA|| > r, in a given norm || - ||, (A + AA) ¢ D.” This is
a problem currently under investigation. If the nonlinearities are of
class C",r > 2, and bounds on the norms of the Jacobian matrices
are available, then it may be possible to use bounds on the size of
the neighborhoods in the inverse function theorem [20, p. 119] in the
problem of estimating changes in the equilibrium due to perturbations.

Finally, note that existence and uniqueness of the equilibrium point
are provable under a weaker condition (© € Po) than the condition
assumed (—© € D) and the same may be true of the stability proof.
Thus, it is of interest to find the weakest conditions under which the
results in this note hold.

APPENDIX

Lemma Al:A € D = AK € D, for all K > 0 diagonal.
Proof A € D = 3P > 0 diagonal such that PA + ATP =
-@ <0
Thus,

KPAK + KATPK = —-KQK <0
or, PL(AK)+ (AK)TP, < 0; P, := PK = K'P > 0; diagonal. O

Lemma A2: A € D= A™! € D.
Proof: A € D= 3P >0 diagonal such that PA+ATP =
—-Q < 0.
Since 4 € D is nonsingular

(ATHTPAA Y+ (A HTATPUA Yy =AY P+ P(A™TY

=—AaHlfQuahH <o O
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Modified Hopfield-Tank Neural Networks Applied
to the '"Unitized" Maximum Flow Problem

Toshinori Munakata, Yoshiyasu Takefuji, and Henrik Johansson

Abstract— Two new approaches called "graph unitization" are pro-
posed to apply neural networks similar to the Hopfield-Tank models to
determine optimal solutions for the maximum flow problem. They are: (1)
n-vertex and n”-edge neurons on a unitized graph; (2) m-edge neurons on
a unitized graph. Graph unitization is to make the flow capacity of every
edge equal to 1 by placing additional vertices or edges between existing
vertices. In our experiments, solutions converged most of the time, and
the converged solutions were always optimal, rather than near optimal.

I. INTRODUCTION

The maximum flow problem is one of several well-known ba-
sic problems for combinatorial optimizations in weighted directed
graphs. Because of its importance in many areas of applications,
such as computer science, engineering, and operations research,
the maximum flow problem has been extensively studied by many
researchers using a variety of methods [1], [2]. They include: a classic
approach [3], translation of the maximum fiow problem into maximal
flow problem in layered network [4], an O(n® log n) parallel algorithm
[5], O(n® log n) to O(n®) distributed algorithms [6], [7], and recent
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oS
A maximum flow problem, where the numbers at the edges are the
flow capacities.

Fig. 1.

sequential algorithms of, e.g., O(mn) for m > n' ™ for any constant ¢
[8], with n vertices and m edges. Also, a genetic algorithm, another
"guided random search” technique as neural networks, has recently
been applied to the problem [9]. The problem discussed here is
to determine an optimal solution for a given unidirected, integer-
weighted graph with no loops (See Fig. 1). The weight at each edge
represents the flow capacity of the edge. Under theses constraints,
we want to maximize the total flow from the source (vertex no. 1)
to the sink (vertex no. n).

Recently Hopfield-Tank neural network models have been applied
to various optimization problems [10], [11]. In this article, we
discuss two new approaches called "graph unitization" to apply
modified Hopfield-Tank models to the maximum flow problem. Graph
unitization means to make the flow capacity of every edge equal to
one. This is performed by placing additional vertices/edges between
the existing vertices in the first approach. In the second approach,
additional edges are placed between existing vertices. The reason for
these unitization processes is that considering potential complications
of the use of a Hopfield-Tank type model [12], [13], we followed
many other applications of two-value (0 or 1) models (e.g., the
traveling salesman problem (TSP) [10]).

As in other Hopfield-Tank models, we think of neurons as abstract
representation of the vertices and edges of a graph, which do not
carry any values themselves. Actual numeric values are carried by
variables associated with these neurons. An "equation of motion" is
employed to direct u;; for balancing and maximizing the flow, where
u;; is an input to edge neuron ij for an edge from vertex / to vertex
j- Using u,,, an "activation function" determines flow 17, the output
of edge neuron ij. Starting with randomized values of an initial «,,
the equations are repeatedly used to determine an optimal solution.
Our models do not assume symmetric connectivity and continuous
state and time, which are deviations from standard Hopfield-Tank
models. The optimality of the Hopfield-Tank type models is an open
problem, and generally it is not guaranteed. In our experiments,
solutions converged most of the time, and the converged solutions
were always optimal, rather than near optimal.

II. MODEL 1: n-VERTEX AND n?-EDGE
NEURONS ON A UNITIZED GRAPH

2.1 The Algorithm

A. Unitization of the Original Graph: The graph is unitized by
placing additional vertices between existing vertices so that the flow
capacity of every existing edge is 1. For example, if the flow capacity
from vertices a to b is 3, then we insert three vertices, say, a1, a2,
and a3 between a and b, so that each of the six new edges has a
flow capacity of 1 (Fig. 2). After unitization, the graph for Fig. | is
converted to a graph of n = 92 vertices. The graph is represented by
the flow capacity matrix, [c;;], i, j = 1, n, where ¢;; = 1 if an edge
from vertex i to vertex j exists, and c¢,; = 0 otherwise.

(a)
OO0 = =0

Fig. 2. Converting a general weighted directed graph to a unitized directed
graph by inserting new vertices.

B. Basic Equations: We consider n vertex neurons for i = 1, n,
and »* edge neurons for i= |, n and j = 1, n. Two variables, u;; and
Vi, are associated with edge neuron ij. In the following, (1) is the
equation of motion and (2) is an incremental equation, which together
determine «,;. Equation (3) is the activation function. Our problem
is to determine whether 17, = 1 (flow) or 13, = 0 (no flow).

duu/dt = A{(l +aRND)EX, - (1 +UR1VDJ)E}£—1} +B (1)
uf;“) = ufj’ + (du;/dt)At )

Vi, =0if u;j <0:V,;, =1 otherwise 3)

In the above, A, B, and a are constants. RN D, is a uniform random
number over [0, 1] for vertex i. £'X, represents an excess inflow into
vertex { and relates to V as defined in the Step 1 below. The A terms
are for balancing the flow and the last B term is for maximizing the
flow. No "energy equation” is used in this model. Instead, the solution
of the flow itself is checked, as described in Steps 3 and 4 below.
C. Initialization of Values Associated with the Vertex and Edge Neu-
rons: The edge neurons associated with ¢;; = 0 are deactivated. Next,
following the convention of neural network models, initial values of
Uy uE?), are assigned randomly, then initial solution V3, is computed
using (3). Initialization of variables associated with the vertex neurons
are not needed.

D. Iteration Process: Repeat the following steps until 2 maximum
flow is obtained in Step 4.

» Step 1. Compute the following for each of n - 2 vertex neurons,
i=2,n-1. (i =1 for the source, i = n for the sink). I; = ¥V,
(Total) inflow to vertex i, where ¥ is taken over the incoming
edges to vertex i. O, = 3.V, (Total) ontflow from vertex,
where T is taken over the outgoing edges from vertex i. EX, =
I; — O, Excess in flow to (if EX; > 0) or outflow from (if
EX, < 0) vertex i. When EXi = 0, vertex i is said to be locally
balanced. (Exceptions: EX; = EX,, = 0 always)

* Step 2. Compute the following for each of vertex i, i=1,n- 1.
BLK, =1 if vertex i is blocked; BLL"; = 0 otherwise. Vertex
i is blocked if for all outgoing edges from vertex i to vertices j’s:
(1) Vi; = 1 (i.e., edge ij is saturated), or (2) vertex j is blocked.
The sink is never blocked.

* Step 3. Check globally balanced condition, BALANCE, where
BALANCE = 1 if every vertex is locally balanced; BALANCE
= 0 otherwise.

Step 4. If BALANCE = 1 (i.e., the flow is globally balanced), and
BLK; =1 (i.e., the source is blocked), then STOP. Otherwise,
continue.

« Step 5. Compute du,,/dt.u,;, and V,, for the next iteration

step using (1)—(3). Go to Step 1.

2.2 Experimental Results

The algorithm was applied to various sizes of graphs; for each
graph, the program was run 10 times starting with different random
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oo (=0

Fig. 3. Unitizing a general weighted direcledgraphbto a unitized graph by
splitting vertices.

1 2
Row0 Column 0
= ol o=
5 6

Fig. 4. A simple unitized graph with the edge numbers. The flow capacity
of each edge is 1.

number seeds. All cases converged giving optimal solutions. The
value of the time step, A¢, was 0.01. For the unitized version of
Fig. 1 (n = 92), the average number of iterations was 568.5, with the
constant values: A = 20, B = 5, and a= 17.

The sequential time complexity of each iteration is O(n) for Steps
1 through 4 and O(m) for Step 5. Hence, the complexity is O(m) if m
>> n, roughly O(n) otherwise. For parallel implementation, the upper
bound of Step 2 is O(n). As in many other Hopfield-Tank model
applications, the difficult part is predicting the number of iterations.
In this model, the number depends on several factors: the size of the
graph, the characteristics of the flow matrix, the values of constant
coefficients, and each run that uses different random values. Based
on our limited experience, the number of iterations appears to be
roughly a low-order polynomial of n, say, O(n).

III. MODEL 2. m-EDGE NEURONS ON A UNITIZED GRAPH

3.1 The Algorithm

A. Unitization of a Graph: In this approach, the general weighted

directed graph for our problem is unitized first by redrawing unit-
capacity edges between each pair of vertices, where the number of
new edges is equal to the original flow capacity. For example, when
the flow capacity of an edge is 3, we would replace the edge with
three unit-capacity edges (see Fig. 3).
B. Numbering Edges and Determining Three Fixed Matrices, F, S, and
D: After the unitization, we number the edges as 1, 2, ...,m (see Fig.
4 where m = 6). As we can see in Fig. 4, an imaginary edge going
into the source may be numbered as "row 0", and another imaginary
edge coming out of the sink may be numbered as "column 0". Our
problem is to determine whether Vj, the flow at each edge, is 0 or
1 fork =1 to m.

Next, we define three fixed matrices F, S, and D for the given
unitized graph as follows:

F, the flow matrix: F = [f;;],4,j = O,m; fi; = 1 if there can
be a flow from edge i to edge j, fi; = 0 otherwise. S, the common
originating vertex matrix: § = [s;;],7,7 = 0,m:s;; = 1 if edges i
and j have a common originating vertex, s;; = 0 otherwise. D, the
common destination vertex matrix: D = [d;,],7.j = 0,m. This is
similar to matrix S, except that the term "originating” is replaced by
"destination”. d.; = 1 if edges i and j have a common destination
vertex, d;; = 0 otherwise. Matrices S and D are symmetric with
respect to the main diagonals.

C. The Equation of Motion: The equation of motion for edge neu-
ron k is given as follows.

dui fdt = (1= for) Y Vil fikx = si) + (1 = fro) Y Vil fir = dia)
)
In the first term, the summation is taken over the edges incident
with the vertex where edge k originates, and the term checks whether
the originating vertex is balanced. If the total inflow and outflow are
balanced at the vertex, then the summation will be zero. If there is
more inflow than outflow, then the summation will be positive, and
this effects to increase the flow of edge k. If there is more outflow
than inflow, the term has the reversed effect. There is one exception
to the first term. When the originating vertex is the source, the flow
balance constraint should be dropped. The (1 - fox) factor is for this
purpose. The second term is the same as the first, except that it checks
the flow balance condition of the ending vertex of edge k.

In our model, the equation of motion contains only the flow
balancing condition without maximizing effect. The effect can be
easily implemented; e.g., in a simple way, we can add a constant
term in the above equation. However, as we will see in the next,
an appropriate flow initialization seems to work well for a practical
purpose.

D. Iteration Process: The edges are saturated at the beginning.
This is done by initializing u; to the upper tenth of the allowed
interval. For example, if the interval is [-50, 50], u, are initialized
in the interval of [40, 50]. The hysteresis McCulloch-Pitts function
is used as our activation function to suppress possible oscillatory
behavior [11]. The iterations are terminated when the entire flow is
balanced.

3.2 Experimental Results

Many runs for different sizes of graphs, the values of m ranging 36
to 200, were carried out. The overall performance was good. In most
cases the iterations converged with 100% or close to 100 (e.g., 98)
% of the time. The worst case was for a graph having 200 neurons
(edges). With the maximum number of iterations set to 2,000, the rate
was 80%, requiring the average 1,020 iterations. The Fig. 1 problem
converged at 100% rate and required 155.3 iterations as an average.
For all the cases, whenever iterations converge, the final solutions
were optimal. The reason for this optimality is most likely due to the
initialization scheme where the flow is saturated.

The time complexities for each iteration are O(m) for sequential,
and O(1) for parallel. As in Model 1, the number of iterations is hard
to predict. Based on our experience, the number of iterations appears
to be roughly a low-order polynomial of m and n, say, O(mn).

IV. CONCLUSIONS

We have experimented with the two new graph unitization ap-
proaches to apply Hopfield-Tank-like models to the maximum flow
problem. The rates of convergence were 100% for the first model
and near 100% for the second model. Both models gave optimal
solutions when they converge. A drawback common to both methods
is that the increased number of vertices and edges by the unitizing
processes. The number of required iterations is likely reduced further
by fine tuning of the algorithms. In summary, the models discussed in
this article and their variations can be potential methods for solving
weighted graph problems in general.
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A Newton-Powell Modification Algorithm For
Harmonic Balance-Based Circuit Analysis

D. D’Amore, P. Maffezzoni, and M. Pillan

Abstract— In this paper a new numerical technique is proposed for
the solution of nonlinear systems of equations. The techniques presented
here are based on a Modification algorithm, and it has been employed to
improve the numerical efficiency of harmonic balance-based frequency
domain circuit simulator (Spectre). This technique exhibits high computa-
tional efficiency and rate of convergence, presenting its best performance
in case of strong nonlinearities and high integration level. To validate
the convergence properties of this technique, some simulations were
performed and the results were compared with those obtained using
Newton and Newton-Samanskii methods.

1. INTRODUCTION

The analysis of nonlinear integrated circuits subjected to large
input signals is still a critical problem, and great interest is now
focused on numerical techniques that improve the efficiency and
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capability of existing simulation tools (1], [2]. Whenever the steady-
state circuit response is required, time-domain circuit simulators (such
as Spice) may not be efficient and accurate, since they need to
perform a transient analysis to reach the steady state, while harmonic
balance-based frequency domain simulators (HB) allow a direct
and accurate periodic solution and a better modeling of distributed
components. On the other hand, HB is not suitable in the simulation of
large-scale integration circuits or in presence of large nonlinearities,
since its computational complexity strongly increases with the number
of considered harmonics. In circuit simulators, the Newton method
is generally employed: thereafter in case of large circuits or strongly
nonlinear ones, a great contribution to the computation burden is due
to the LU decomposition required by each iteration. In literature,
some simplification algorithms have been presented (i.e., Newton-
Samanskii method [3]), but these methods can only be employed for
almost linear circuits since they present poor convergence properties
[4].

In this work a new modification algorithm is presented that
allows a meaningful improvement of the computation efficiency,
quite maintaining Newton accuracy and convergence properties.
This technique is mainly based on the application of the Davidon-
Fletcher-Powell formula [3], [5] for the approximation of the inverse
Jacobian matrix. This technique, which has been efficiently applied
to the steady-state simulation with harmonic balance, could be
extended to traditional time domain circuit simulators, improving
their performances in case of very large systems or strongly nonlinear
ones.

II. FUNDAMENTALS

In the frequency domain, the modified nodal analysis (MNA)
equations describing a nonlinear independent n-node circuit take the
form

FV)=IV)+QQ(V)+ YV +1s=0 0

where

» V-Fourier transform of the node voltage vector v(¢) (v;(¢) being
the j-th node voltage) and I(V')-Fourier transform of i[¢(#)] (the
generic component /;[v(#)] being the sum of the currents due to
nonlinear resistors connected to the jth node);

* QQ(V)-Fourier transform of dg(v)dt (the components ¢;[v(t)]
representing the sum of charges due to nonlinear capacitors
connected to the jth node);

¢ YV-Fourier transform of /f: y{t — T)v(7)d7 corresponding
to the currents due to linear elements. It is assumed that
ST yit)y y(t)dt < x, which means that the electrical circuit
is asymptotically stable;

» I. corresponds to the sum of the currents injected by the
independent current sources.

If only the first # harmonics are considered, the probiem reduces to
the solution of F(V') = 0, where F(V): " X2+ _, qgnx(2h+1)
that is to the solution of & = 1(2h + 1) nonlinear equations.

Several numerical techniques can be employed to achieve the
solution of such a problem [4], [6]. The most employed is the Newton
method, which also exhibits good convergence properties in presence
of strong nonlinearities.

In computer implementation, the generic Newton iteration is for-
mulated as

JIFVWVig = Vi) =—-F(Vy) (2)
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