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Abstract. A maximum neuron model is proposed in 
order to force the state of the system to converge to the 
solution in neural dynamics. The state of the system is 
always forced in a solution domain. The artificial maxi- 
mum neural netv~rk is used for the module orientation 
problem and the bipartite subgraph problem. The use- 
fulness of the maximum neural network is empirically 
demonstrated by simulating randomly generated mas- 
sive instances (examples) in both problems. In randomly 
generated more than one thousand instances our system 
always converges to the solution within one hundred 
iteration steps regardless of the problem size. Our simu- 
lation results show the effectiveness of our algorithms 
and support our claim that one class of NP-complete 
problems may be solvable in a polynomial time. 

1 Introduction 

Since Cook presented the foundations for the theory of 
NP-completeness in 1971 (Cook 1971), a large number 
of commonly encountered problems from mathematics, 
computer science, molecular biology, management 
science, seismology, communications, and operations 
research have been known to be NP-complete. Garey 
and Johnson have collected more than 300 NP-complete 
problems (Garey and Johnson 1979). It is widely be- 
lieved that no polynomial time algorithm exists in find- 
ing the optimum solution of any NP-complete problems 
(Garey and Johnson 1979). Although there is no known 
polynomial time algorithm for solving the NP-complete 
problem, a polynomial time algorithm may exist on a 
particular instance of the problem. An algorithm for 
NP-complete problems must be carefully tested based on 
time complexity or must be tested by massive instances 
(examples) of the problem using empirical simulation 
runs. To practically cope with NP-complete problems, 
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we have been forced to be satisfied with finding a 
near-optimum or a good solution within an acceptable 
time instead of finding an optimum solution. 

The NP-completeness of the module orientation 
problem was proven (Ran Libeskind-Hadas and Liu 
1989). Parallel algorithms for the module orientation 
problem and the bipartite subgraph problem are intro- 
duced and demonstrated in this paper. The empirical 
demonstration of the global minimum convergence of 
our algorithm is given by simulating massive instances 
in both problems as far as we could test the optimality 
using exhaustive search. In randomly generated more 
than one thousand examples in the same manner as Liu 
used (Ran Libeskind-Hadas and Liu 1989), the system 
for the module orientation problem and the bipartite 
subgraph problem always converges within one hun- 
dred iteration steps regardless of the problem size. Our 
empirical simulation result suggests that a polynomial 
algorithm may exist for solving NP-complete prob- 
lems. The simulation result also shows the effectiveness 
of our approach and support our claim that one 
class of NP-complete problems may be solvable in a 
polynomial time. 

2 Module orientation problems 

The proposed parallel algorithms are based on the 
artificial neural network mathematical model where a 
large number of simple processing elements are used and 
interconnected with one another. The processing ele- 
ment and the interconnection between processing ele- 
ments represent the simplified biological neuron and the 
synaptic interconnection respectively. In 1943 McCul- 
loch and Pitts proposed a mathematical model based on 
the biological computation (McCulloch and Pitts 1943). 
The input/output function of the McCulloch-Pitts pro- 
cessing element is given by Vi =f (Ul )  = 1 if U; >i 0 and 
0 otherwise where Vi and Ug are the output and the input 
of the ith neuron respectively. The artificial neural 
network for combinatorial optimization problems was 
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first introduced by Hopfield and Tank (Hopfield and 
Tank 1985). They used the differentiable, continuous, 
and nondecreasing neuron model, called sigmoid func- 
tion, where the input/output function of the ith sigmoid 
processing element is given by V~ = g(Ui) = �89 + tanh 
(Ui/Uo)). Note that U0 is a constant. 

The artificial neural network architecture and the 
interconnections between neurons are determined by the 
fabricated computational energy function E where it 
is given by considering the necessary and sufficient 
constraints of the problem. The goal of the proposed 
algorithms are not only to minimize the fabricated 
energy function but also to empirically find the optimum 
solution. Since the energy function of the NP-complete 
problem has many local minima so that we have been 
forced to be satisfied with finding a near-optimum or a 
good solution within an acceptance time instead of the 
global optimum solution. Simulated annealing attempts 
to give us a hope to alleviate the local minima problem 
(Kirkpatrick et al. 1983). However it needs careful 
temperature scheduling and it takes prohibitively long 
time or infinite time to obtain the global optimum 
solution (Kirkpatrick et al. 1983; Geman and Geman 
1984). Liu has already stated that his neural algorithm 
is better than the best known algorithms including 
simulated annealing, backtracking, dynamic program- 
ming, and others (Libeskind-Hadas and Liu 1989). 

In this paper parallel algorithms for solving one class 
of NP-complete problems are proposed and demon- 
strated. Our empirical simulation result using massive 
instances of the problem shows that the maximum 
neural network model is very promising for optimization 
problems. The instances are randomly generated in the 
same manner as Liu used (Libeskind-Hadas and Liu 
1989). The solution quality of our algorithm is always 
much better than that of Liu's algorithm. Our approach 
seems to eliminate a large part of the local minima in the 
energy function to obtain the optimum solution. 

For physical design of very large scale integrated 
circuits, it is important to properly place the given 
modules under certain constraints such as the minimum 
area and/or the minimum total wire length. The module 
orientation problem was first proposed by Libeskind- 
Hadas and Liu (Libeskind-Hadas and Liu 1989). The 
first assumption of the problem is that all the modules 
have already been placed according to some placement 
algorithm (Hanan et al. 1976) (Preas and Karger 1988). 
The second assumption is that the pin positions on each 
module are fixed. The goal of this problem is to mini- 
mize the total wire length by flipping each module with 
respect to its vertical and/or horizontal axes of symme- 
try as shown in Fig. 1. This means that there are only 
four possible orientations for each module. Libeskind- 
Hadas and Liu called the problem as module orienta- 
tion problem: finding the optimal flips for a given set of 
modules. Another similar problem was discussed at the 
same time by Libeskind-Hadas and Liu: module rota- 
tion problem. Libeskind-Hadas and Liu have proved 
the module orientation problem and module rotation 
problem are both NP-complete (Libeskind-Hadas and 
Liu 1989). 

I I  
Fig. 1. Four orientations for one module 

7 - - - - - -  

For simplicity, -the Euclidean metric is used to defne 
the distance between two pins in the module orientation 
problem. Let p and q be two pins which belong to the 
same net N. Let (xp, yp) and (Xq, yq) represent the 
positions of p and q according to a certain orientation 
of the modules. The goal is to minimize the total wire 
length where the summation is carried out over all pairs 
of pins which belong to the same net. That is to minimize 
L where L is given by 

L : Z N/(XP -- Xq )2 "~- (Yp -- yq)2 
p,q,~ N 

1 M 
~--2~m ~ ~ d m i ' m ' j V m ' i V m ' j  (1) 

rn'v~m i j 

where dmi,m,j denotes the total length of all wires between 
the mth module in the ith orientation and the m'th 
module in the j th  orientation. Note that V,,a = 1 if the 
ruth module is in the ith orientation, 0 otherwise. 

The problem is to determine the optimum orientation 
for each module in order to minimize L. Libeskind- 
Hadas and Liu mapped the problem into the Hopfield 
neural network by using the 4 x M neural array where 
M is the number of modules and each module has 4 
possible orientations. The mapping procedure is similar 
to that of the travelling salesman problem proposed by 
Hopfield and Tank (Hopfield and Tank 1985) where an 
N x N neural array is prepared for an N-city problem. 
The computational energy function E for the N-city 
problem is given by: 

: AN~,~gxiVxy.-}-2~i~,~~ gxi Vyi E 
2 x  i j ~ i  X y # x  ))2 
+ ~  V~i- N 

x 

+ + Vy.,_ 1) (2) 
y i 

Note that Vxr represents the output state of the xith 
neuron and dxy for a distance between the xth and the 
yth city. 

For an M-module orientation problem, Libeskind- 
Hadas and Liu give the following energy form: 

E : ~ Vmi Vmj -~- ~ Vmi -- N 
m i j ~ i  i 

m'v~m i j 
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where dmi,m, j is the total length of  all wires between the 
mth module in the ith orientation and the m'th module 
in the j t h  orientation. Note that Vm~ shows the output 
state of  the mith neuron and represents possibility of 
the mth module in the ith orientation. Vmi = 1 means 
that the mth module is in the ith orientation. Vm~ = 0 
means that the mth module is not in the ith orientation. 
The first two terms in (3) globally attempts to force 
their system to have a valid configuration. However 
they cannot guarantee it because of using the sigrnoid 
neurons. The last term is to minimize the total wire 
length. 

It is well known that the neural representation and 
the computational energy function E are not unique. 
The first two terms in (3) are simply replaced by local 
constraints such that one and only one orientation is 
allowed for each module. The energy function is given 
by: 

A M 

~ ~dmi,m,jVrn,iVm, J (4) 
m m'~m i j 

In order to eliminate the first term in (4), the 
maximum neuron function is introduced. The maxi- 
mum neuron model was successfully used for solving 
tiling problems (Takefuji and Lee 1990). The maximum 
neural network is composed of  M clusters where each 
cluster consists of  n neurons. One and only one neuron 
among n neurons with the maximum input per cluster is 
encouraged to fire in the maximum neural network. The 
input/output function of  the ith maximum neuron in 
the ruth cluster is given by: Vmi = 1 if 
Umi=max{Uml . . . . .  Vm,} and U~>~Umj for i > j ,  0 
otherwise. In the maximum neuron model it is always 
guaranteed to keep one and only one neuron to fire per 
cluster. The proof  of the local minimum convergence of 
the maximum neural network is given in Lemma 2 of 
Appendix for the details. The proposed parallel al- 
gorithm uses a 4 x M maximum neural network array 
where M is the number of modules (clusters). The 
output state of  the ith neuron in the mth cluster 
represents one of  four possible module orientations. 
For  example, Vml = Vm2 = Vm3 = 0 and Vm4 = 1 indi- 
cate that the mth module is in the fourth orientation. I f  
the maximum neuron function is used for the module 
orientation problem, then the first term in (4) will be 
completely eliminated. Because the condition of  firing 
one and only one neuron per module is always satisfied. 
Therefore, the computational energy E is finally given 
by: 

E = dmi,m, j Vm, i Vm, J (5) 
m" m i j 

The motion equation of the mi-th neuron is given from 
(5) and Lemma 2 by: 

M 4 
dOmi-- C E Z dmi, m'jVm'd (6) 

dt m'~m j 

Note that the energy function E in (5) is exactly 
equal to L in (1) with C = 1. It is guaranteed that the 
maximum neural network always generates a valid 
configuration for the module orientation problem. It is 
not required to tune the coefficient parameters in the 
computational energy function E, while in (2), (3), and 
(4) we must suffer from tuning the coefficients. 
Whenever our system converges, the correspond- 
ing configuration is always forced to be a valid solu- 
tion, while none of  the existing neural networks can 
guarantee it. 

Equation (5) follows the quadratic form where sym- 
metry of dm;,m7 is always satisfied and the diagonal 
elements are all zeros. Based on our empirical simula- 
tion (5) seems to have no local minima or less local 
minima than (3), and (4). An open question is that we 
need the mathematical proof  of  the global minimum 
convergence and how fast the system can converge to 
the global minimum state. We randomly generated 
more than one thousand instances including up to 
300-module problems. We followed the same procedure 
to generate the instances as Liu used (Libeskind-Hadas 
and Liu 1989) and compared our algorithm with the 
Liu's algorithm. The simulator is developed on a Mac- 
intosh SE/30 and a DEC3100 machine where it numer- 
ically solves the motion equaitons based on (6). 
Remember that no parameters adjustment is needed in 
our algorithm since (6) consists of  one and only one 
term, while Liu and others must suffer from tuning the 
coefficient parameters in (3). 

The termination condition is given by the conver- 
gence state of  the system. As long as the system reaches a 
stable point or an equilibrium state, the procedure will be 
terminated. The equilibrium state is defined that all firing 
neurons have the smallest change rate of  the input per 
cluster. The condition of  the equilibrium state is given by: 

Vmi(t) = 2  and dUm.i(t) 
' dt 

{dU~ttl(t) ' dUm,2(t) dUm,3(t) dU~llr(t) } 
= min dt ' dt ' 

for m = l  . . . . .  M. 

In the existing Hopfield neural networks the condition of  
the system convergence has never been clearly defined. 

3 Parallel algorithm for module orientation problems 

The following procedure describes the developed simula- 
tor for module orientation problems: 
0. Set t = 0 
1. The same number is assigned to the initial values of  
Urea(t) for m = 1 . . . . .  M and i = 1 . . . . .  4 where M is 
the number of  modules. 
2. Evaluate the values of  Vm.~ based on the maximum 
neuron function for m = 1 . . . . .  M and i = 1 . . . . .  4. 

V,~,i(t) = 1 if Um,i(t) = max{Um,l(t), Um,2(t), Um,3(t), 
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and Um,i(t) >>- Umj(t) for i > j ,  

0 otherwise 
3. Use the motion equation in (6) to compute AUm,i(t) 

M 4 

AUm,i(t ) = -  ~ ~, dmi,mTVm,d(t) 
m ' ~ m j = l  

4. Compute  Um,i(t) based on the first order Euler 
method: 

Um,i(t) = Um,~(t) + AUra,;(/) for m = 1 . . . . .  M and 

i = 1  . . . . .  4. 

5. Increment t by 1. I f  the state of  the system reaches 
the equilibrium state then stop this procedure else go 
to step 2. 

Figure 2a,b shows the initial configuration of the 
4-module problem and the final global minimum solu- 
tion respectively. We have examined our algorithm 
using more than one thousand examples including up to 
300-module problems. The 300-module problem be- 
longs to the large size problems based on the current 
VLSI technology. For  4-module to 14-module prob- 
lems, we were able to verify the global optimality of  our 
solutions by exhaustive search to substantiate our al- 
gorithm. The searching complexity of  the 9-module 
problem is 49 where it took 15 h to find the global 
minimum on a Macintosh SE/30 machine. Exhaustive 
search for the 14-module problem took more than 9 h 
on a Dec3100 machine. More than one hundred simula- 
tion runs were performed for each instance of  a prob- 
lem where the initial state of  the system is randomly 
generated for every simulation run. Figure 3 a - f  shows 
the initial states and the converged states of  the system 
for 4-module through 9-module problems respectively. 
Figure 4 shows the simulation result of  a 100-module 
problem. Figure 5a,b shows the relation between the 
energy and the number  of  iteration steps for a 100- 
module and a 200-module problem respectively. Figure 
6 shows the simulation result of  the 200-module prob- 
lem. Table 1 shows comparisons of  the solution quality 
and the number  of  iteration steps to converge between 
our algorithm and Liu's algorithm. Each element except 
the last column in Table 1 is represented by the average 
value and standard deviation of  100 simulation runs. 
The last column represents the best solutions found by 

Fig. 2. A 4-module orientation problem. 
b the final solution 

0 i r 
a The initial configuration, 

a Energy=1259 Energy=612 

b 
Energy=1504 Energy=g8g 

Energy=1640 Energy=1429 

d Energy=1986 Energy=1809 

e Energy = 1352 Energy = 1136 

f Energy=3495 Energy=3032 

Fig. 3a-f. Module orientation problems with module size 4 through 
9 The left picture and the right picture describe the initial configura- 
tion and the final converged solution respectively, a Module size 4, b 
module size 5, e module size 6, tl module size 7, e module size 8, f 
module size 9 
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b 

Fig. 4a,b. The initial state and final solution for the module size 100. 
a Initial state, b final solution 
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b Iteration steps 

Fig. 5. a The relation between the energy and the number of iteration 
steps for the module size 100. b The relation between the energy and 
the number of iteration steps for the modules size 200 

Fig. 6a,b. The simulation of the 200-module problem, a Initial 
configuration, b final configuration. 

Liu's algorithm (Libeskind-Hadas and Liu 1989). We 
did not show the number of  average iteration steps in 
the Liu's algorithm because the Liu's algorithm cannot 
always guarantee the valid solution. It usually takes 
several thousand iteration steps in the Liu's algorithm 
(Libeskind-Hadas and Liu 1989). In our massive in- 
stances of  the simulation runs, the proposed system 
converges within one hundred iteration steps in all 
examples. All of  small module orientation problems 
were solved by exhaustive search and our algorithm. 
The solutions of  exhaustive search always match with 
that of  our algorithm. As far as we could test the 
optimality of  the solutions for the problem with up to 
14 modules they are found to be optimum. The simula- 
tion results suggests that a polynomial algorithm may 
exist for solving certain NP-complete problems. 

4 Bipartite subgraph problems 

We have also investigated another parallel algorithm 
for the bipartite subgraph problem which belongs to 
NP-complete problems (Garey and Johnson 1979). 
Instance: Graph G = (V, E), positive K ~< [E. 
Question: Is there a subset E '  ~_ E with JE'] t> K such 
G' = (V, E')  is bipartite? 

Z~ = l Zx,, y Zi = I Optimization description: minimize N N 2 
Connection(x, y) Vx, i Vy,i subject Z2= l Vx,i = 1 for x = 1 
to N where N is the number of  vertices. 



248 

Table 1. Comparisons of the solution quality and the number of iteration steps between the 
maximumneural network and Liu's algorithm 

maximum Libeskind-Hadas 
neural network and Liu's method 

size initial length solution iteration best 
steps solution 

10 2101.73+ 116.44 1835.41 __ 1 . 4 7  21.76___+6.70 1862.14 
20 3881.83 _____ 121.65 3441.36 4- 8.33 20.00 4- 0.00 3615.03 
30 8077.71 4- 123.42 7572.56 4- 38.89 26.99 4- 8 . 7 1  7787.16 
40 11653.56 4- 237.04 10915.48 4- 19.70 20.15 + 0.36 11098.94 
50 14465.39 __ 166.13 13613.96 4- 18.88 20.00 4- 0.00 13997.05 
60 17355.84 __ 213.49 16252.41 __+ 5.68 28.13 + 2.03 17025.57 
70 20732.71 __ 251.92 19536.33 4- 6.42 35.06 __ 6.23 20317.16 
80 23343.07 ___+ 262.78 21987.59 4- 10.45 20.88 4- 2.32 22863.13 
90 28500.73 __ 147.09 27286.13 4- 8.74 20.12 4- 0.55 28220.61 

100 29202.87 + 166.83 27786.89 __ 22.61 21.68 ___+ 4.85 28872.39 
110 32428.37 4- 332.73 30500.13 __.+ 5.33 21.84 4- 3.28 31820.94 
120 36310.35 _____ 268.47 34313.00 4- 12.62 26.60 __ 3.68 35710.07 
130 38712.22 ___+ 211.43 36739.19 __+ 5.10 22.92 • 9.08 38458.68 
140 39833.82 __+ 169.51 38017.12 + 12.04 27.40 ___+ 6.43 39490.21 
150 41936.09 __ 247.46 39797.70 ___+ 10.68 45.31 _____ 8.53 41432.39 
160 47461.52 • 322.05 45004.91 __ 9.51 21.33 ___+ 5.63 46753.53 
170 48908.64 4- 339.95 46306.76 + 19.05 42.49 4- 7 . 7 1  48583.02 
180 53067.66 + 404.72 50215.30 __ 20.92 20.24 __ 0 . 5 1  52262.82 
190 57300.09 4- 654.85 53939.43 __ 18.81 21.14 __ 2.06 56009.94 
200 61660.71 4- 624.13 58011.41 4- 15.50 20.66 4- 1 . 6 3  60533.42 
210 63037.32 4- 550.81 59674.39 4- 18.90 31.38 4- 15.12 62340.82 
220 66242.21 4- 438.35 62810.16 4- 8.84 20.25 4- 0.48 65517.85 
230 70237.66 + 404.48 66649.87 __ 18.96 24.97 4- 7.83 69416.02 
240 76063.41 4- 403.92 72461.73 __+ 12.85 44.70 4- 6.16 75178.57 
250 77558.16 4- 336.19 73982.45 4- 12.66 32.22 4- 3.86 76856.05 
260 81739.41 __+ 485.51 77883.85 4- 18.53 39.15 __ 9.08 80752.46 
270 82243.45 • 325.69 78258.86 4- 9.85 25.00 ___+ 12.84 81635.57 
280 86999.08 • 423.88 82805.05 __ 13.91 31.25 __+ 9.86 86288.80 
290 91282.96 +___ 310.18 87366.05 __ 17.80 36.14 __ 6.08 89890.12 
300 91871.88 4- 351.93 87672.34 __ 19.70 20.46 4- 1 . 4 8  90107.05 

Vx.i e {1, O} 

Note that Connection(x, y) = 1 if there exists an edge 
between vertex x and vertex y, 0 otherwise. Vx.i = 1 
means that the xth vertex belongs to the ith partition. 
The goal of the problem is to divide a graph into two 
subsets so as to minimize the number of removed edges 
where edges in the same subset are only removed from 
the given graph. Note that edges bridging between two 
subsets are not removed. Based on the described energy 
function, the motion equation is given by: 

d U x ,  i _ N 
dt ~ Connection(x, y)Vy,i (7) 

y ~ x  

The simulator based on (7) has been developed in the 
similar manner as shown in the module orientation 
problem. We have simulated a massive number of 
instances of the bipartite subgraph problem including 
up to 1000-vertex problems. The simulation result 
shows the consistency of our algorithm for the bipartite 
subgraph problem and supports our claim. Because of 
the limitation of the current printing technology, more 
than 100-vertex bipartite subgraph problems could not 
be shown in this paper. Figure 7 shows the simulation 
result of the 50-vertex 175-edge bipartite subgraph 
problem where 44 edges are removed from the original 

graph. Figure 8 shows the relation between the energy 
and the number of iteration steps for the 50-vertex 
175-edge problem. Figure 9 and 10 depict the simula- 
tion result of the 100-vertex 692-edge bipartite sub- 
graph problem and the relation between the energy and 
the number of iteration steps respectively. In Fig. 9, 235 
edges are removed from the original graph. In Fig. 7 
and 9 black and grey vertices represent two subsets. 

5 Conclusion 

In this paper we have proposed a new approach to 
empirically solving certain NP-complete problems in a 
polynomial time. The simulator was developed for solv- 
ing massive instances of the module orientation prob- 
lem and the bipartite subgraph problem. The 
simulation result empirically substantiates our claim 
such that one class of NP-complete problems may be 
solvable in a polynomial time. The relationship between 
some important NP-complete problems is illustrated in 
Fig. 11 where an arrow represents the exact transforma- 
ti.on. In other words, no exact-polynomial transforma- 
tion algorithm is needed so that they are 
mathematically equivalent to each other (Garey and 
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Fig. 7a,h. 50-vertex 175-edge bipartite subgraph problem, a 50-vertex 
175-edge graph, b final solution with 131-edge 
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Fig. 9a,b. t00-vertex 692-edge bipartite subgraph problem, a 100-ver- 
tex 692-edge graph, b final solution with 452-edge 
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40 
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1•, �9 C C C 

o z~o 4~o 6~o 8~o ,0.00 
Iteration steps 

Fig. 8. The relation of the energy and the number of iteration steps 
for the 50-vertex 175-edge bipartite subgraph problem 
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<.- 

LLJ 

278 
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230 
0 zr0 460 6~0 8~0 10'00 
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Fig. 10. The relation between the energy and the number of iteration 
steps for the 100-vertex 692-edge graph problem 

Johnson 1979). Our algorithms are able to solve the 
NP-complete problems described in Fig. 11 without any 
additional transformation algorithm (Lee and Takefuji 
1991). We have successfully applied the maximum neu- 
ral model to solve the problems listed in Fig. 11 (Lee 
1991). It can be concluded that the maximum neural 

network has the following advantages over the conven 
tional neural network models: 1) the maximum neural 
network model has the exact termination condition to 
terminate the procedure, while in the existing neural 
network models the condition is not clearly defined; 2) 
the maximum neural network always guarantees the 
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[ Ising spin ~ ] I ~ ~ g ~ h  I 

11 T 
Max cut problem 

tT 
I I 

IT 
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IT IT 
Fig. 11. The relationship between certain NP-complete problems 

[ ld,cxlule o r i s o n  prot~arn [ 

feasible solut ion while the existing neural  ne twork  mod-  
els generate  invalid solutions; and 3) coefficient-parame- 
ter ad jus tment  or  tur ing is not  needed in the m a x i m u m  
neural  ne twork  while the existing neural  ne twork  
models  mus t  suffer f rom it. 

Appendix The proof of the local minimum convergence 

L e m m a  1 and  l emma  2 are in t roduced to prove  that  the 
p roposed  system is a lways allowed to converge to the 
local min imum.  

L e m m a  1. dE/dt <~ 0 is satisfied under two conditions 
such as (dUi/dt)=-(OE/dVi)  and V i =f(Ui) where 
f(Ui) is a nondecreasing function. 

Proof. dE/dt = ~ (dUi/dt) (dV,-/dU,.) (dE/dV~) = 
- E l  (dU~/dt) 2 (dV~/dU~) where dE/dVi is replaced by 
-dUi /d t  (condi t ion  1) ~<0 where dVi/dUi > 0 (condi-  
t ion 2) Q.E.D.  

In L e m m a  2, the local m i n i m u m  convergence o f  the 
m a x i m u m  neural  ne twork  is given. 

L e m m a  2. dE/dt <~ 0 is satisfied under two conditions 
such as (1) dUm,i/dt = i d E I d V m , i  and (2) Vm, i = 1 if 
Um,i = max{Urn, i, Urn,2, U,,,3, U,,,4} and U,,,i >~ Umjfor 
i >j  0 otherwise 

Proof. Consider  the derivatives o f  the computa t iona l  
energy E with respect to t ime t. 

dUm, i dVm, i dE 
~ = ~  at dUm,idVm, i 

(d"mA2 dV~, 

where de/dVm, i is replaced by -dUm,i/dt (condi t ion 1). 
Let  dUm.~/dt be U,..i(t + d t ) -  Um.~(t)/(dt). Let dVma/ 
dU.,,~ be (Vma(t + dt) - Vm,e(t))(U,.,i(t + dt) -- U,.a(t)). 
Let us consider  the te rm E~(dUm.~/dt) 2 dV,.a/dUm, ~ 

for  each module  separately. Let  Um,a(t + d t )  be the 
m a x i m u m  at  t ime t + dt  and Um,b(t) be the m a x i m u m  at  
t ime t for  the module  m. Um,a(t + d r )  = max{ U,.,l(t + dt), 
Um,2(t d- dt), Um,3(t q- d), Um,4(t --}- d/)} Um,b(t ) = max  
{Um, l(t), Um,2(t), Um,3(t), Um,4(t)}. It  is necessary and 
sufficient to consider the following two cases: 
1)a =b 
2) a # b  
I f  the condit ion 1) is satisfied, then there is not  state 
change for  the module  m. Consequent ly,  Ei (dUma/ 
dt) 2 dVm,i/dUm,i must  be zero. 
I f  2) is satisfied, then 

( d U m i ~ 2 d V m , i  

=(_Um,a(t ~-dt)--Um,a(t)) 2 Vra,a(t . - I - d / ) -  Vm,a(t ) 
dt Um,a(t +dt) Um,a(t) 

+ (Um,b(t + d t ) -  Um,b(t)'~ 2 Vm,b(t + d t ) -  Vm,b(t) 
\ dt /I Um,b(t +dt) Um,b(t) 

= (gm,a(t + dt) - gm,a(t)) 2 1 
dt Um,a(t + dt) - Um,a(t ) 

+(Um,b(t+dt)-Um,b(t))  2 --1 
dt Um,b(t +dt) - Um,b(t) 

_ Um,a(t -1- dt) - Um,a(t ) Um,b(t "k- dt) -- U,n,b(t ) 
(dt) 2 (dt) 2 

1 
- (dt) 2 {Um,~(t + dt) -- U,.,~(t) - Um,b(t +dt) 

+ 

1 
=(dt) 2 { Um,a(t q- dt) -- Um,b(t q- dt) + Um,b(l ) 

- > 0 

because U.,,a(t + dt) is the m a x i m u m  at t ime t + dt and 
Um,b(t) is the m a x i m u m  at t ime t for  the module  m. 
The contr ibut ion f rom each te rm is either 0 or  positive, 
therefore 

(dUmi~2dVmi ~. \ ~ , }  ~ > ~ 0 a n d  

(dUmi~2dPmi dE 
- ~  , ~ \ ~ - t " ' ]  ~ < 0 = ~ - d - - / ~ < 0 Q ' E ' D "  
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