
Biol. Cybern. 67, 243-251 (1992) Biological
cyt me
�9 Springer-Verlag 1992

An artificial maximum neural network: a winner-take-all neuron model
forcing the state of the system in a solution domain

Yoshiyasu Takefuji ~, Kuo-Cbun Lee z, and Hideo Aiso s

1 Department Of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, OH 44106, USA
2 Research & Development Department, Cirrus Logic, Freemont, CA 94538, USA
3 Faculty of Environmental Information, Keio University, Fujisawa, 252 Japan

Received September 19, 1991/Accepted in revised form January 29, 1992

Abstract. A maximum neuron model is proposed in
order to force the state of the system to converge to the
solution in neural dynamics. The state of the system is
always forced in a solution domain. The artificial maxi-
mum neural netv~rk is used for the module orientation
problem and the bipartite subgraph problem. The use-
fulness of the maximum neural network is empirically
demonstrated by simulating randomly generated mas-
sive instances (examples) in both problems. In randomly
generated more than one thousand instances our system
always converges to the solution within one hundred
iteration steps regardless of the problem size. Our simu-
lation results show the effectiveness of our algorithms
and support our claim that one class of NP-complete
problems may be solvable in a polynomial time.

1 Introduction

Since Cook presented the foundations for the theory of
NP-completeness in 1971 (Cook 1971), a large number
of commonly encountered problems from mathematics,
computer science, molecular biology, management
science, seismology, communications, and operations
research have been known to be NP-complete. Garey
and Johnson have collected more than 300 NP-complete
problems (Garey and Johnson 1979). It is widely be-
lieved that no polynomial time algorithm exists in find-
ing the optimum solution of any NP-complete problems
(Garey and Johnson 1979). Although there is no known
polynomial time algorithm for solving the NP-complete
problem, a polynomial time algorithm may exist on a
particular instance of the problem. An algorithm for
NP-complete problems must be carefully tested based on
time complexity or must be tested by massive instances
(examples) of the problem using empirical simulation
runs. To practically cope with NP-complete problems,

Correspondence to: Y. Takefuji

we have been forced to be satisfied with finding a
near-optimum or a good solution within an acceptable
time instead of finding an optimum solution.

The NP-completeness of the module orientation
problem was proven (Ran Libeskind-Hadas and Liu
1989). Parallel algorithms for the module orientation
problem and the bipartite subgraph problem are intro-
duced and demonstrated in this paper. The empirical
demonstration of the global minimum convergence of
our algorithm is given by simulating massive instances
in both problems as far as we could test the optimality
using exhaustive search. In randomly generated more
than one thousand examples in the same manner as Liu
used (Ran Libeskind-Hadas and Liu 1989), the system
for the module orientation problem and the bipartite
subgraph problem always converges within one hun-
dred iteration steps regardless of the problem size. Our
empirical simulation result suggests that a polynomial
algorithm may exist for solving NP-complete prob-
lems. The simulation result also shows the effectiveness
of our approach and support our claim that one
class of NP-complete problems may be solvable in a
polynomial time.

2 Module orientation problems

The proposed parallel algorithms are based on the
artificial neural network mathematical model where a
large number of simple processing elements are used and
interconnected with one another. The processing ele-
ment and the interconnection between processing ele-
ments represent the simplified biological neuron and the
synaptic interconnection respectively. In 1943 McCul-
loch and Pitts proposed a mathematical model based on
the biological computation (McCulloch and Pitts 1943).
The input/output function of the McCulloch-Pitts pro-
cessing element is given by Vi =f (Ul) = 1 if U; >i 0 and
0 otherwise where Vi and Ug are the output and the input
of the ith neuron respectively. The artificial neural
network for combinatorial optimization problems was

244

first introduced by Hopfield and Tank (Hopfield and
Tank 1985). They used the differentiable, continuous,
and nondecreasing neuron model, called sigmoid func-
tion, where the input/output function of the ith sigmoid
processing element is given by V~ = g(Ui) = �89 + tanh
(Ui/Uo)). Note that U0 is a constant.

The artificial neural network architecture and the
interconnections between neurons are determined by the
fabricated computational energy function E where it
is given by considering the necessary and sufficient
constraints of the problem. The goal of the proposed
algorithms are not only to minimize the fabricated
energy function but also to empirically find the optimum
solution. Since the energy function of the NP-complete
problem has many local minima so that we have been
forced to be satisfied with finding a near-optimum or a
good solution within an acceptance time instead of the
global optimum solution. Simulated annealing attempts
to give us a hope to alleviate the local minima problem
(Kirkpatrick et al. 1983). However it needs careful
temperature scheduling and it takes prohibitively long
time or infinite time to obtain the global optimum
solution (Kirkpatrick et al. 1983; Geman and Geman
1984). Liu has already stated that his neural algorithm
is better than the best known algorithms including
simulated annealing, backtracking, dynamic program-
ming, and others (Libeskind-Hadas and Liu 1989).

In this paper parallel algorithms for solving one class
of NP-complete problems are proposed and demon-
strated. Our empirical simulation result using massive
instances of the problem shows that the maximum
neural network model is very promising for optimization
problems. The instances are randomly generated in the
same manner as Liu used (Libeskind-Hadas and Liu
1989). The solution quality of our algorithm is always
much better than that of Liu's algorithm. Our approach
seems to eliminate a large part of the local minima in the
energy function to obtain the optimum solution.

For physical design of very large scale integrated
circuits, it is important to properly place the given
modules under certain constraints such as the minimum
area and/or the minimum total wire length. The module
orientation problem was first proposed by Libeskind-
Hadas and Liu (Libeskind-Hadas and Liu 1989). The
first assumption of the problem is that all the modules
have already been placed according to some placement
algorithm (Hanan et al. 1976) (Preas and Karger 1988).
The second assumption is that the pin positions on each
module are fixed. The goal of this problem is to mini-
mize the total wire length by flipping each module with
respect to its vertical and/or horizontal axes of symme-
try as shown in Fig. 1. This means that there are only
four possible orientations for each module. Libeskind-
Hadas and Liu called the problem as module orienta-
tion problem: finding the optimal flips for a given set of
modules. Another similar problem was discussed at the
same time by Libeskind-Hadas and Liu: module rota-
tion problem. Libeskind-Hadas and Liu have proved
the module orientation problem and module rotation
problem are both NP-complete (Libeskind-Hadas and
Liu 1989).

I I
Fig. 1. Four orientations for one module

7 - - - - - -

For simplicity, -the Euclidean metric is used to defne
the distance between two pins in the module orientation
problem. Let p and q be two pins which belong to the
same net N. Let (xp, yp) and (Xq, yq) represent the
positions of p and q according to a certain orientation
of the modules. The goal is to minimize the total wire
length where the summation is carried out over all pairs
of pins which belong to the same net. That is to minimize
L where L is given by

L : Z N/(XP -- Xq)2 "~- (Yp -- yq)2
p,q,~ N

1 M
~--2~m ~ ~ d m i ' m ' j V m ' i V m ' j (1)

rn'v~m i j

where dmi,m,j denotes the total length of all wires between
the mth module in the ith orientation and the m'th
module in the j th orientation. Note that V,,a = 1 if the
ruth module is in the ith orientation, 0 otherwise.

The problem is to determine the optimum orientation
for each module in order to minimize L. Libeskind-
Hadas and Liu mapped the problem into the Hopfield
neural network by using the 4 x M neural array where
M is the number of modules and each module has 4
possible orientations. The mapping procedure is similar
to that of the travelling salesman problem proposed by
Hopfield and Tank (Hopfield and Tank 1985) where an
N x N neural array is prepared for an N-city problem.
The computational energy function E for the N-city
problem is given by:

: AN~,~gxiVxy.-}-2~i~,~~ gxi Vyi E
2 x i j ~ i X y # x))2
+ ~ V~i- N

x

+ + Vy.,_ 1) (2)
y i

Note that Vxr represents the output state of the xith
neuron and dxy for a distance between the xth and the
yth city.

For an M-module orientation problem, Libeskind-
Hadas and Liu give the following energy form:

E : ~ Vmi Vmj -~- ~ Vmi -- N
m i j ~ i i

m'v~m i j

245

where dmi,m, j is the total length of all wires between the
mth module in the ith orientation and the m'th module
in the j t h orientation. Note that Vm~ shows the output
state of the mith neuron and represents possibility of
the mth module in the ith orientation. Vmi = 1 means
that the mth module is in the ith orientation. Vm~ = 0
means that the mth module is not in the ith orientation.
The first two terms in (3) globally attempts to force
their system to have a valid configuration. However
they cannot guarantee it because of using the sigrnoid
neurons. The last term is to minimize the total wire
length.

It is well known that the neural representation and
the computational energy function E are not unique.
The first two terms in (3) are simply replaced by local
constraints such that one and only one orientation is
allowed for each module. The energy function is given
by:

A M

~ ~dmi,m,jVrn,iVm, J (4)
m m'~m i j

In order to eliminate the first term in (4), the
maximum neuron function is introduced. The maxi-
mum neuron model was successfully used for solving
tiling problems (Takefuji and Lee 1990). The maximum
neural network is composed of M clusters where each
cluster consists of n neurons. One and only one neuron
among n neurons with the maximum input per cluster is
encouraged to fire in the maximum neural network. The
input/output function of the ith maximum neuron in
the ruth cluster is given by: Vmi = 1 if
Umi=max{Uml Vm,} and U~>~Umj for i > j , 0
otherwise. In the maximum neuron model it is always
guaranteed to keep one and only one neuron to fire per
cluster. The proof of the local minimum convergence of
the maximum neural network is given in Lemma 2 of
Appendix for the details. The proposed parallel al-
gorithm uses a 4 x M maximum neural network array
where M is the number of modules (clusters). The
output state of the ith neuron in the mth cluster
represents one of four possible module orientations.
For example, Vml = Vm2 = Vm3 = 0 and Vm4 = 1 indi-
cate that the mth module is in the fourth orientation. I f
the maximum neuron function is used for the module
orientation problem, then the first term in (4) will be
completely eliminated. Because the condition of firing
one and only one neuron per module is always satisfied.
Therefore, the computational energy E is finally given
by:

E = dmi,m, j Vm, i Vm, J (5)
m" m i j

The motion equation of the mi-th neuron is given from
(5) and Lemma 2 by:

M 4
dOmi-- C E Z dmi, m'jVm'd (6)

dt m'~m j

Note that the energy function E in (5) is exactly
equal to L in (1) with C = 1. It is guaranteed that the
maximum neural network always generates a valid
configuration for the module orientation problem. It is
not required to tune the coefficient parameters in the
computational energy function E, while in (2), (3), and
(4) we must suffer from tuning the coefficients.
Whenever our system converges, the correspond-
ing configuration is always forced to be a valid solu-
tion, while none of the existing neural networks can
guarantee it.

Equation (5) follows the quadratic form where sym-
metry of dm;,m7 is always satisfied and the diagonal
elements are all zeros. Based on our empirical simula-
tion (5) seems to have no local minima or less local
minima than (3), and (4). An open question is that we
need the mathematical proof of the global minimum
convergence and how fast the system can converge to
the global minimum state. We randomly generated
more than one thousand instances including up to
300-module problems. We followed the same procedure
to generate the instances as Liu used (Libeskind-Hadas
and Liu 1989) and compared our algorithm with the
Liu's algorithm. The simulator is developed on a Mac-
intosh SE/30 and a DEC3100 machine where it numer-
ically solves the motion equaitons based on (6).
Remember that no parameters adjustment is needed in
our algorithm since (6) consists of one and only one
term, while Liu and others must suffer from tuning the
coefficient parameters in (3).

The termination condition is given by the conver-
gence state of the system. As long as the system reaches a
stable point or an equilibrium state, the procedure will be
terminated. The equilibrium state is defined that all firing
neurons have the smallest change rate of the input per
cluster. The condition of the equilibrium state is given by:

Vmi(t) = 2 and dUm.i(t)
' dt

{dU~ttl(t) ' dUm,2(t) dUm,3(t) dU~llr(t) }
= min dt ' dt '

for m = l M.

In the existing Hopfield neural networks the condition of
the system convergence has never been clearly defined.

3 Parallel algorithm for module orientation problems

The following procedure describes the developed simula-
tor for module orientation problems:
0. Set t = 0
1. The same number is assigned to the initial values of
Urea(t) for m = 1 M and i = 1 4 where M is
the number of modules.
2. Evaluate the values of Vm.~ based on the maximum
neuron function for m = 1 M and i = 1 4.

V,~,i(t) = 1 if Um,i(t) = max{Um,l(t), Um,2(t), Um,3(t),

246

and Um,i(t) >>- Umj(t) for i > j ,

0 otherwise
3. Use the motion equation in (6) to compute AUm,i(t)

M 4

AUm,i(t) = - ~ ~, dmi,mTVm,d(t)
m ' ~ m j = l

4. Compute Um,i(t) based on the first order Euler
method:

Um,i(t) = Um,~(t) + AUra,;(/) for m = 1 M and

i = 1 4.

5. Increment t by 1. I f the state of the system reaches
the equilibrium state then stop this procedure else go
to step 2.

Figure 2a,b shows the initial configuration of the
4-module problem and the final global minimum solu-
tion respectively. We have examined our algorithm
using more than one thousand examples including up to
300-module problems. The 300-module problem be-
longs to the large size problems based on the current
VLSI technology. For 4-module to 14-module prob-
lems, we were able to verify the global optimality of our
solutions by exhaustive search to substantiate our al-
gorithm. The searching complexity of the 9-module
problem is 49 where it took 15 h to find the global
minimum on a Macintosh SE/30 machine. Exhaustive
search for the 14-module problem took more than 9 h
on a Dec3100 machine. More than one hundred simula-
tion runs were performed for each instance of a prob-
lem where the initial state of the system is randomly
generated for every simulation run. Figure 3 a - f shows
the initial states and the converged states of the system
for 4-module through 9-module problems respectively.
Figure 4 shows the simulation result of a 100-module
problem. Figure 5a,b shows the relation between the
energy and the number of iteration steps for a 100-
module and a 200-module problem respectively. Figure
6 shows the simulation result of the 200-module prob-
lem. Table 1 shows comparisons of the solution quality
and the number of iteration steps to converge between
our algorithm and Liu's algorithm. Each element except
the last column in Table 1 is represented by the average
value and standard deviation of 100 simulation runs.
The last column represents the best solutions found by

Fig. 2. A 4-module orientation problem.
b the final solution

0 i r
a The initial configuration,

a Energy=1259 Energy=612

b
Energy=1504 Energy=g8g

Energy=1640 Energy=1429

d Energy=1986 Energy=1809

e Energy = 1352 Energy = 1136

f Energy=3495 Energy=3032

Fig. 3a-f. Module orientation problems with module size 4 through
9 The left picture and the right picture describe the initial configura-
tion and the final converged solution respectively, a Module size 4, b
module size 5, e module size 6, tl module size 7, e module size 8, f
module size 9

247

b

Fig. 4a,b. The initial state and final solution for the module size 100.
a Initial state, b final solution

21590

21540

21500

214GO

m 21420

21380

21540 -

21500
a 0

2 6 3 8 0

I I I I I I I I I

| ! ! i w

4? 73 9k 120

2 6 3 4 0

2 6 3 0 0

2 6 2 6 0

m 2 6 2 2 0

2 6 1 8 0

261 40

2 6 1 0 0
o 2.O 4'0 6'o 8'0 16o

b Iteration steps

Fig. 5. a The relation between the energy and the number of iteration
steps for the module size 100. b The relation between the energy and
the number of iteration steps for the modules size 200

Fig. 6a,b. The simulation of the 200-module problem, a Initial
configuration, b final configuration.

Liu's algorithm (Libeskind-Hadas and Liu 1989). We
did not show the number of average iteration steps in
the Liu's algorithm because the Liu's algorithm cannot
always guarantee the valid solution. It usually takes
several thousand iteration steps in the Liu's algorithm
(Libeskind-Hadas and Liu 1989). In our massive in-
stances of the simulation runs, the proposed system
converges within one hundred iteration steps in all
examples. All of small module orientation problems
were solved by exhaustive search and our algorithm.
The solutions of exhaustive search always match with
that of our algorithm. As far as we could test the
optimality of the solutions for the problem with up to
14 modules they are found to be optimum. The simula-
tion results suggests that a polynomial algorithm may
exist for solving certain NP-complete problems.

4 Bipartite subgraph problems

We have also investigated another parallel algorithm
for the bipartite subgraph problem which belongs to
NP-complete problems (Garey and Johnson 1979).
Instance: Graph G = (V, E), positive K ~< [E.
Question: Is there a subset E ' ~_ E with JE'] t> K such
G' = (V, E') is bipartite?

Z~ = l Zx,, y Zi = I Optimization description: minimize N N 2
Connection(x, y) Vx, i Vy,i subject Z2= l Vx,i = 1 for x = 1
to N where N is the number of vertices.

248

Table 1. Comparisons of the solution quality and the number of iteration steps between the
maximumneural network and Liu's algorithm

maximum Libeskind-Hadas
neural network and Liu's method

size initial length solution iteration best
steps solution

10 2101.73+ 116.44 1835.41 __ 1 . 4 7 21.76___+6.70 1862.14
20 3881.83 _____ 121.65 3441.36 4- 8.33 20.00 4- 0.00 3615.03
30 8077.71 4- 123.42 7572.56 4- 38.89 26.99 4- 8 . 7 1 7787.16
40 11653.56 4- 237.04 10915.48 4- 19.70 20.15 + 0.36 11098.94
50 14465.39 __ 166.13 13613.96 4- 18.88 20.00 4- 0.00 13997.05
60 17355.84 __ 213.49 16252.41 __+ 5.68 28.13 + 2.03 17025.57
70 20732.71 __ 251.92 19536.33 4- 6.42 35.06 __ 6.23 20317.16
80 23343.07 ___+ 262.78 21987.59 4- 10.45 20.88 4- 2.32 22863.13
90 28500.73 __ 147.09 27286.13 4- 8.74 20.12 4- 0.55 28220.61

100 29202.87 + 166.83 27786.89 __ 22.61 21.68 ___+ 4.85 28872.39
110 32428.37 4- 332.73 30500.13 __.+ 5.33 21.84 4- 3.28 31820.94
120 36310.35 _____ 268.47 34313.00 4- 12.62 26.60 __ 3.68 35710.07
130 38712.22 ___+ 211.43 36739.19 __+ 5.10 22.92 • 9.08 38458.68
140 39833.82 __+ 169.51 38017.12 + 12.04 27.40 ___+ 6.43 39490.21
150 41936.09 __ 247.46 39797.70 ___+ 10.68 45.31 _____ 8.53 41432.39
160 47461.52 • 322.05 45004.91 __ 9.51 21.33 ___+ 5.63 46753.53
170 48908.64 4- 339.95 46306.76 + 19.05 42.49 4- 7 . 7 1 48583.02
180 53067.66 + 404.72 50215.30 __ 20.92 20.24 __ 0 . 5 1 52262.82
190 57300.09 4- 654.85 53939.43 __ 18.81 21.14 __ 2.06 56009.94
200 61660.71 4- 624.13 58011.41 4- 15.50 20.66 4- 1 . 6 3 60533.42
210 63037.32 4- 550.81 59674.39 4- 18.90 31.38 4- 15.12 62340.82
220 66242.21 4- 438.35 62810.16 4- 8.84 20.25 4- 0.48 65517.85
230 70237.66 + 404.48 66649.87 __ 18.96 24.97 4- 7.83 69416.02
240 76063.41 4- 403.92 72461.73 __+ 12.85 44.70 4- 6.16 75178.57
250 77558.16 4- 336.19 73982.45 4- 12.66 32.22 4- 3.86 76856.05
260 81739.41 __+ 485.51 77883.85 4- 18.53 39.15 __ 9.08 80752.46
270 82243.45 • 325.69 78258.86 4- 9.85 25.00 ___+ 12.84 81635.57
280 86999.08 • 423.88 82805.05 __ 13.91 31.25 __+ 9.86 86288.80
290 91282.96 +___ 310.18 87366.05 __ 17.80 36.14 __ 6.08 89890.12
300 91871.88 4- 351.93 87672.34 __ 19.70 20.46 4- 1 . 4 8 90107.05

Vx.i e {1, O}

Note that Connection(x, y) = 1 if there exists an edge
between vertex x and vertex y, 0 otherwise. Vx.i = 1
means that the xth vertex belongs to the ith partition.
The goal of the problem is to divide a graph into two
subsets so as to minimize the number of removed edges
where edges in the same subset are only removed from
the given graph. Note that edges bridging between two
subsets are not removed. Based on the described energy
function, the motion equation is given by:

d U x , i _ N
dt ~ Connection(x, y)Vy,i (7)

y ~ x

The simulator based on (7) has been developed in the
similar manner as shown in the module orientation
problem. We have simulated a massive number of
instances of the bipartite subgraph problem including
up to 1000-vertex problems. The simulation result
shows the consistency of our algorithm for the bipartite
subgraph problem and supports our claim. Because of
the limitation of the current printing technology, more
than 100-vertex bipartite subgraph problems could not
be shown in this paper. Figure 7 shows the simulation
result of the 50-vertex 175-edge bipartite subgraph
problem where 44 edges are removed from the original

graph. Figure 8 shows the relation between the energy
and the number of iteration steps for the 50-vertex
175-edge problem. Figure 9 and 10 depict the simula-
tion result of the 100-vertex 692-edge bipartite sub-
graph problem and the relation between the energy and
the number of iteration steps respectively. In Fig. 9, 235
edges are removed from the original graph. In Fig. 7
and 9 black and grey vertices represent two subsets.

5 Conclusion

In this paper we have proposed a new approach to
empirically solving certain NP-complete problems in a
polynomial time. The simulator was developed for solv-
ing massive instances of the module orientation prob-
lem and the bipartite subgraph problem. The
simulation result empirically substantiates our claim
such that one class of NP-complete problems may be
solvable in a polynomial time. The relationship between
some important NP-complete problems is illustrated in
Fig. 11 where an arrow represents the exact transforma-
ti.on. In other words, no exact-polynomial transforma-
tion algorithm is needed so that they are
mathematically equivalent to each other (Garey and

0

Fig. 7a,h. 50-vertex 175-edge bipartite subgraph problem, a 50-vertex
175-edge graph, b final solution with 131-edge

249

Fig. 9a,b. t00-vertex 692-edge bipartite subgraph problem, a 100-ver-
tex 692-edge graph, b final solution with 452-edge

I O0

88

,~,76
m,_
o~

LU

64

52

40

1
1•, �9 C C C

o z~o 4~o 6~o 8~o ,0.00
Iteration steps

Fig. 8. The relation of the energy and the number of iteration steps
for the 50-vertex 175-edge bipartite subgraph problem

350

326

302
<.-

LLJ

278

254

230
0 zr0 460 6~0 8~0 10'00

Iteration steps

Fig. 10. The relation between the energy and the number of iteration
steps for the 100-vertex 692-edge graph problem

Johnson 1979). Our algorithms are able to solve the
NP-complete problems described in Fig. 11 without any
additional transformation algorithm (Lee and Takefuji
1991). We have successfully applied the maximum neu-
ral model to solve the problems listed in Fig. 11 (Lee
1991). It can be concluded that the maximum neural

network has the following advantages over the conven
tional neural network models: 1) the maximum neural
network model has the exact termination condition to
terminate the procedure, while in the existing neural
network models the condition is not clearly defined; 2)
the maximum neural network always guarantees the

250

[Ising spin ~] I ~ ~ g ~ h I

11 T
Max cut problem

tT
I I

IT
[]

IT IT
Fig. 11. The relationship between certain NP-complete problems

[ld,cxlule o r i s o n prot~arn [

feasible solut ion while the existing neural ne twork mod-
els generate invalid solutions; and 3) coefficient-parame-
ter ad jus tment or tur ing is not needed in the m a x i m u m
neural ne twork while the existing neural ne twork
models mus t suffer f rom it.

Appendix The proof of the local minimum convergence

L e m m a 1 and l emma 2 are in t roduced to prove that the
p roposed system is a lways allowed to converge to the
local min imum.

L e m m a 1. dE/dt <~ 0 is satisfied under two conditions
such as (dUi/dt)=-(OE/dVi) and V i =f(Ui) where
f(Ui) is a nondecreasing function.

Proof. dE/dt = ~ (dUi/dt) (dV,-/dU,.) (dE/dV~) =
- E l (dU~/dt) 2 (dV~/dU~) where dE/dVi is replaced by
-dUi /d t (condi t ion 1) ~<0 where dVi/dUi > 0 (condi-
t ion 2) Q.E.D.

In L e m m a 2, the local m i n i m u m convergence o f the
m a x i m u m neural ne twork is given.

L e m m a 2. dE/dt <~ 0 is satisfied under two conditions
such as (1) dUm,i/dt = i d E I d V m , i and (2) Vm, i = 1 if
Um,i = max{Urn, i, Urn,2, U,,,3, U,,,4} and U,,,i >~ Umjfor
i >j 0 otherwise

Proof. Consider the derivatives o f the computa t iona l
energy E with respect to t ime t.

dUm, i dVm, i dE
~ = ~ at dUm,idVm, i

(d"mA2 dV~,

where de/dVm, i is replaced by -dUm,i/dt (condi t ion 1).
Let dUm.~/dt be U,..i(t + d t) - Um.~(t)/(dt). Let dVma/
dU.,,~ be (Vma(t + dt) - Vm,e(t))(U,.,i(t + dt) -- U,.a(t)).
Let us consider the te rm E~(dUm.~/dt) 2 dV,.a/dUm, ~

for each module separately. Let Um,a(t + d t) be the
m a x i m u m at t ime t + dt and Um,b(t) be the m a x i m u m at
t ime t for the module m. Um,a(t + d r) = max{ U,.,l(t + dt),
Um,2(t d- dt), Um,3(t q- d), Um,4(t --}- d/)} Um,b(t) = max
{Um, l(t), Um,2(t), Um,3(t), Um,4(t)}. It is necessary and
sufficient to consider the following two cases:
1)a =b
2) a # b
I f the condit ion 1) is satisfied, then there is not state
change for the module m. Consequent ly, Ei (dUma/
dt) 2 dVm,i/dUm,i must be zero.
I f 2) is satisfied, then

(d U m i ~ 2 d V m , i

=(_Um,a(t ~-dt)--Um,a(t)) 2 Vra,a(t . - I - d /) - Vm,a(t)
dt Um,a(t +dt) Um,a(t)

+ (Um,b(t + d t) - Um,b(t)'~ 2 Vm,b(t + d t) - Vm,b(t)
\ dt /I Um,b(t +dt) Um,b(t)

= (gm,a(t + dt) - gm,a(t)) 2 1
dt Um,a(t + dt) - Um,a(t)

+(Um,b(t+dt)-Um,b(t)) 2 --1
dt Um,b(t +dt) - Um,b(t)

_ Um,a(t -1- dt) - Um,a(t) Um,b(t "k- dt) -- U,n,b(t)
(dt) 2 (dt) 2

1
- (dt) 2 {Um,~(t + dt) -- U,.,~(t) - Um,b(t +dt)

+

1
=(dt) 2 { Um,a(t q- dt) -- Um,b(t q- dt) + Um,b(l)

- > 0

because U.,,a(t + dt) is the m a x i m u m at t ime t + dt and
Um,b(t) is the m a x i m u m at t ime t for the module m.
The contr ibut ion f rom each te rm is either 0 or positive,
therefore

(dUmi~2dVmi ~. \ ~ , } ~ > ~ 0 a n d

(dUmi~2dPmi dE
- ~ , ~ \ ~ - t " '] ~ < 0 = ~ - d - - / ~ < 0 Q ' E ' D "

References

Cook SA (1971) Proc. of 3rd Ann. ACM Symp. on Theory of
Computing. ACM, New York, pp 151-158

Garey MR, Johnson DS (1979) Computers and intractability: a guide
to the theory of NP-completeness. Freeman, San Francisco

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Trans Patt
Anan Mach. Int PAMI-6:721

Hanan M, Wolff Sr PK, Agule BJ (1976). J Design Automat Fault
Tolerant Comput 1:28-61

Hopfield JJ, Tank DW (1985) Neural computation of decisions in
optimization problems. Biol Cybern 52:141-152

Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220:4598:671-680

Lee KC (1991) Ph.D. thesis. Case Western Reserve University, Cleve-
land

Lee KC, Takefuji Y (1991) CAISR Tech. Rep. TR91-104 (Center for
Automation and Intelligent Systems Research, Case Western
Reserve University, Cleveland)

251

Libeskind-Hadas R, Liu CL (1989) Proc. 26th Design Automation
Conference. ACM, New York, pp 400-405

McCulloch WS, Pitts WH (1943) A logical calculus of the ideas
imminent in nervous activity. Bull Math biophys 5:115

Preas BT, Karger PG (1988) Physical design automation of VLSI
systems. In: Preas B, Lorenzetti M (eds) chap 4. Benjamin-Cum-
mings, Menlo Park, Calif, pp 87-155

Takefuji Y, Lee K C (1990) A parallel algorithm for tiling problems.
IEEE Trans Neural Networks 1:143-145

