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Summary 
In this paper, we evaluate the performance of O(log2M) 
self organizing map (SOM) algorithm previously 
presented by us. Our algorithm was developed for 
reduction of the computational costs and is the fastest one 
in SOM algorithm. The order of the computational costs is 
log2M where the size of a feature map is M2. Our 
algorithm does not require neighborhood learning and thus 
tuning of parameters is relatively simple. The 
performances of the basic SOM developed by Kohonen 
and our algorithm were tested using the benchmark of a 
central nervous system (CNS) tumor patient dataset which 
comprises five groups. The simulation results show our 
algorithm can map the input dataset more appropriately 
than the basic SOM with constant or changing parameters 
of the neighborhood function. Our algorithm is able to 
contribute to various research fields using the SOM 
algorithm. 
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Introduction 

Self organizing map (SOM) developed by Kohonen [1] is 
one of the unsupervised learning algorithms that maps 
multi-dimensional input datasets onto a two-dimensional 
lattice or hexagonal space in such way that the similar 
input data are mapped closely and the different input data 
distantly. SOM is applied in various research fields 
including speech or speaker recognition [2], image 
segmentation [3], and bioinformatics [4]. 

One of SOM problems lies in computational costs. 
The computational costs are largely depending on 
comparing weight vectors for searching winner vectors 
where the order of the basic SOM is M2 when the size of 
the map is M2. Tree-structured SOM with O(M log M) was 
proposed by Koikkalainen and Oja [5] and Truong [6], a 
new method with O(M) by Kohonen, and O(log M) by Xu 
and Chang [7]. Our algorithm requires O(log2M) times of 
comparison using the subdividing method with the binary 
search method, and is currently the fastest SOM algorithm 
[8]. 

The other SOM problem is in difficulty of 
parameters tuning. Especially, the neighborhood function, 
an essential part of the SOM algorithm, has several 
parameters involved each other. Neighborhood size and 
variations of learning rates according to the distance from 
winner vectors are required to be set adequately. And 
reductions of neighborhood size and learning rates 
through iteration learning are important for high 
performance mapping. Our algorithm tunes just learning 
rates of winner vectors without any neighborhood learning 
function where tuning of parameters is relatively simple 
[8]. 

In this paper, the performances of the basic SOM 
and our algorithm were tested using the benchmark of a 
central nervous system (CNS) tumor patient dataset [9] 
which comprises five groups. Similar data belonging to 
the same group should be mapped to cluster in a tight area 
but are sometimes mapped on long-distant areas 
unsuccessfully making two or more clusters when the size 
of the map is large. The number of clusters made on maps 
was counted under various settings of parameters. 
O(log2M) SOM algorithm is detailed in section 2 and CNS 
tumors dataset in section 3. 

2. O(log2M) SOM algorithm 

In this section, our previous work [8] is quoted to illustrate 
O(log2M) SOM algorithm precisely. 

The proposed algorithm is composed of two 
methods. One is a binary search for searching winner 
vectors and the other is a method of subdividing feature 
map gradually.  At the initialization in the proposed 
algorithm, there is a 22×  weight vector on SOM as 
shown in Fig.1-a. As the process of the proposed 
algorithm proceeds, the feature map is subdivided by the 
subdividing method. At any subdivision stage in the 
proposed algorithm, winner vectors are searched roughly 
at the beginning and accurately at the end by the binary 
search method. The proposed algorithm does not have the 
neighborhood function, because one and only one winner-
vector set is trained every stage. The procedure is detailed 
in this section. 
A. Initialization 
Input is a dataset of k-dimensional vectors Xi(i=1,2,3,…,n). 
A feature map is two-dimensional layer of MM ×  nodes 
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(M=2m+1, m=1, 2, 3,…).  At the beginning, only four 
nodes on the coordinates (1,1), (1,M), (M,1) and (M,M) 
have k-dimensional weight vectors W(x,y) whose values 
are arbitrary in the extent of the distribution of input data 
and other nodes do not appear as shown in Fig. 1-a. These 
four weight vectors are trained by the same method as the 
basic SOM with total O(1) computation. 
B. Subdividing method 
Subdividing method draws median lines between all 
neighboring two lines  
on feature maps, so that subdivides an '' MM ×  feature 
map into a )1'2()1'2( −×− MM  feature map. Fig.1-a 
shows the process of the subdivisions from a 22×  map 
to a MM ×  map. Every new node is assigned a weight 
vector, whose value is the average of the values of weight 
vectors of the closest nodes to the new node. The values of 
the new gray nodes in Fig.1-b are defined by 

2
)2,(),(),( sYXWYXWsYXW ++

=+  (1) 

2
),2(),(),( YsXWYXWYsXW ++

=+  (2) 

2
)2,2()2,(

)2,(
sYsXWsYXW

sYsXW
++++

=

++
 (3) 

2
)2,2(),2(

),2(
sYsXWYsXW

sYsXW
++++

=

++
 (4) 

4
)2,2(),2(

4
)2,(),(

),(

sYsXWYsXW

sYXWYXW
sYsXW

++++
+

++
=

++

 (5) 

After each subdivision, winner vectors searched by 
the binary search are trained with the total T(p) times. T is 
an overall total learning times and p is the number of 
subdivision stages when the feature map size is 

)12()12( 11 +×+ −− pp . The final size of the map is 
determined at the initialization and the subdivision stops at 
the size. 
C. Binary Search 
When an  '''' MM ×  map, that means that '''' MM ×  
nodes on a map have weight vectors and other nodes do 
not appear, and an input data X(t) are given, an winner 
vector is searched by following procedures. 
At the initialization, the search space of the map is 
extended by 

Mx ≤≤0  and My ≤≤0  (6) 

All space of the map is the subject of the search. After 
repeating Step A and Step B  1)1''(log2 +−M  times 

reflexively, the final closest vector ),( cc yxW  is the 
winner vector. 

Step A: When search space is extended by 

21 xxx ≤≤  and 21 yyy ≤≤  (7) 
the closest vector to X(t) is searched from four weight 
vectors on the vertexes of the search space. 
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Step B: The search extent is divided into four 
quarters and the proposed algorithm assumes that a winner 
vector is on a quarter space where the closest vector 
W(xc,yc)  exits. The extent of search space is changed into 

21 '' xxx ≤≤  and 21 '' yyy ≤≤  (9) 
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Fig.1-c shows the process of the binary search 
when M'=5. The solid lines mean the searched space, the 
weight vectors of the black and gray nodes are compared. 
The three weight vectors of the black nodes are the closest 
vectors to the input vector X(t) at each step and the final 
closest vector Wwin is a winner. 
D. Learning 
The proposed algorithm only trains winner vectors by  

))()()(()()1( tWtXttWtW winwinwin −+=+ α . (12) 
Because neighborhood vectors do not require training, 
learning rate )10( << αα  dose not have arguments of 
coordinates of the weight vectors. Value of α  can 
decrease in inverse proportion to time argument t 
meaningfully and constant α  can also work valuably. 

3. CNS tumors dataset 

The basic SOM and O(log2M) SOM were tested with 42 
patient samples of the central nervous system tumors [9] 
that comprise five groups: 10 medulloblastomas, 10 
malignant gliomas, 10 rhabdoid tumors, 8 supratentorial 
primitive neruroectodermal tumors, and 4 normal human 
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cerebella. Each sample is described by expression levels 
of 50 genes comparing these tumor types. Among each 
gene, the values of expression levels were normalized by 

the standard deviation from the mean. The dataset is 
available at http://www.broad.mit.edu/cancer/. 
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Fig.1. Process of O(log2M) SOM algorithm. Circles denote weight vectors. (a) Process of the subdividing method. (b) 
New node by subdivision. (a part of a map) (c) Process of the binary search method. [8] 

4. Evaluation SOM performance 

The optimal mapping is that the differences between the 
features of input data are represented by the distances on 
the two-dimensional map. The essential part of SOM 
algorithm is the neighborhood function that enables the 
optimal mapping. The neighborhood function tunes the 
close-range weight vectors with the same input vectors, 
and the values of close-range weight vectors become close. 
Consequently, the input data of the same group would be 
mapped on the close-range weight vectors.  

But the neighborhood function sometimes allows 
that long-distance weight vectors become close. The 
neighborhood function can work the close-range weight 
vectors from winner vectors to be close, but cannot be 
effective in training the long-distant weight vectors to be 
different. As a result, input data of the same group are 
mapped separately to make two or more clusters.  

In this paper, we have evaluated mapping results 
based on how small number of clusters the input data of 
the same group forms on the map. The definition of the 
cluster is 

a. The number of clusters is counted according to 
each group of the input dataset and finally 
added. 

b. An input data that the Manhattan distances on 
the map between itself and at least one input 
vector belonging to a cluster Cu are less than or 
equal to dz belongs to Cu. 

c. The Manhattan distance on the map between at 
least one pair of elements in an arbitrary set of 
Cu and in the difference set must be less than or 
equal to dz. 

d. When an input data Xa belonging to Cv (v is not 
equal to u) is mapped between two input data Xb 
and Xc belonging to Cu, the Manhattan distances 
between Xb and Xc must be measured 
circumventing the lattice on which Xa is mapped. 

The CNS tumor dataset comprises five groups and when 
the summation of the number of clusters is five we 
presume that the mapping is optimal. 

5. Simulations and results 

We adopted three kinds of constant learning rates: 0.01, 
0.005, and 0.001 and two kinds of map sizes: 92 and 172. 
At each simulation, total 10,000 input data was chosen 
from 42 patient samples randomly for learning of weight 
vectors. We set learning rate of winners and the 
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neighborhood of the basic SOM as 
1

1
+

×
d

α  where d 

denotes Manhattan distance from the winner vector and 
the constant neighborhood size as 2(M-1) that means all of 
the weight vectors are always objects of neighborhood 
learning. Our algorithm trained only winner vectors. 

And next we adopted variable learning rates and 
the size of neighborhood for the basic SOM. The learning 
rates and the sizes of the neighborhood should be 
gradually reduced for the optimal training. We used two 
kinds of variable learning rates: one is 0.03 at the start of 
SOM 

 
Table 1 The number of clusters after mapping by the basic SOM and O(log2M) SOM using CNS tumors dataset that 
comprises five groups. The breakdown of the 100 times simulations and the average under each condition are listed. 
 

The number of clusters 
Method Map 

size Learning rate Neighborhood 
size 5 6 7 8 9 10 11 12 Average

0.01 32 6 25 33 27 4 5 - - 7.13 
0.005 32 5 19 34 26 9 2 3 2 7.43 172 
0.001 32 3 18 26 18 16 11 6 2 7.93 
0.01 16 8 35 34 18 5 - - - 6.77 
0.005 16 8 20 44 21 5 - 2 - 7.03 92 
0.001 16 3 23 20 33 13 8 - - 7.54 

0.03 to 0.003 32 to 1 12 26 37 15 7 3 - - 6.88 172 0.01 to 0.001 32 to 1 9 22 39 19 10 1 - - 7.02 
0.03 to 0.003 16 to 1 16 24 32 22 4 2 - - 6.8 

The basic 
SOM 

92 0.01 to 0.001 16 to 1 8 32 26 27 4 3 - - 7.1 
0.01 0 14 67 14 3 - 2 - - 6.14 
0.005 0 18 40 30 11 1 - - - 6.37 172 
0.001 0 14 43 29 13 1 - - - 6.44 
0.01 0 20 63 13 2 - - 2 - 6.07 
0.005 0 9 45 29 9 8 - - - 6.62 

O(log2M) 
SOM  

92 
0.001 0 8 47 31 13 1 - - - 6.52 

 
algorithm and gradually reduced to 0.003 at the end, the 
other is from 0.01 to 0.001 and a variable neighborhood 
size: 32 Manhattan distance with 172 map at the start and 
16 with 92 map and gradually reduced to be one at the end.  
Each simulation was repeated 100 times with different 
seeds of the random function that defined the initialization 
of the weight vectors and counted the number of clusters 
according to the definition described in section 4. We set 
dz=5 and 9 respectively when map size was 92 and 172. 
The breakdown of the 100 times of simulations under each 
condition is shown in Table 1. The average computational 
time for one simulation was 74.9 sec. by the basic SOM 
and 3.6 sec. by our algorithm when map size was 172. 

6. Discussion 

The average number of clusters by our algorithm is lower 
than that by the basic SOM under six kinds of conditions 
(Table 1). The basic algorithm could upgrade with 
gradually reduced learning rates and neighborhood sizes. 
On the other hand, our algorithm with any of three 

constant learning rates and no learning of neighborhood 
weight vectors worked effectively.  

In the process of the SOM iteration learning, once 
both of long-distant two weight vectors become close to 
input data belonging to a group, the possibility that the 
weight vectors differ is low unless many winner vectors 
for the input data belonging to other groups are found very 
near one of the weight vectors fortunately. Because 
neighborhood learning, the essential part of the SOM 
algorithm, affects the long-distant weight vectors from 
winner vectors very weakly. 

There are conceivably two reasons why the values 
of two long-distant weight vectors are close in the process 
of iteration learning. One is that both of the two long-
distant weight vectors are assigned close values at the 
initialization of the SOM algorithm and the other is that 
the winner vectors for input data belonging to the same 
group happen to be found in two different areas many 
times. The both of the two situations are common when 
the number of the weight vectors is large. We think the 
high performance of our algorithm is on account that there 
are only four weight vectors at the initialization and that 
our algorithm always compares only four weight vectors at 
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a time in searching winner vectors. The subdividing 
method and the binary search developed for reduction of 
the computational costs could remove neighborhood 
learning and tuning of parameters of neighborhood 
functions and heighten the performance of mapping.  

7. Conclusion 

In this paper, we evaluated the basic SOM and O(log2M) 
SOM algorithm using CNS tumor patients dataset 
comprises five groups. Three kinds of learning rates and 
two kinds of map sizes are adopted for both algorithm and 
variable learning rates and neighborhood sizes for the 
basic SOM algorithm. The simulation results show that 
our algorithm could map CNS tumor patient dataset more 
appropriately than the basic algorithm under all kinds of 
parameters settings. O(log2M) SOM algorithm is able to 
contribute to various research fields using SOM algorithm. 
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