A Novel Approach to Fault-Tolerant Logic

YosHiYAsU TAKEFUJI* and MASAHIRO IKEDA*

This paper presents a design scheme that supplies logic circuits with very high reliability by providing redun-
dancy to gate function logic using conventional gates. The basic redundant logic circuits are called Fault-
Tolerant Gates (FTGs). The construction and design of FTGs, such as AND, OR, NOT, NAND, NOR and
Exclusive OR gates, are described. The improved reliability of these FTGs is evaluated in comparison with
conventional gates. An FTG is shown to have a stronger restoring function than any voting circuit. The relia-
bility improvements for the proposed FTGs are discussed for Full Adder and Arithmetic Logic Unit (ALU)
applications. The reliability of VLSIs employing FTGs is discussed in terms of the development of ultra reliable
computers. The new design scheme not only greatly increases the reliability of logic circuits, but also may

improve the yield of VLSIs.

1. Introduction

Hardware redundancy systems allow the formation of
fault-tolerant circuits [1].

There are three different redundancy systems: [2].

1. Static

2. Dynamic

3. Hybrid

The same functional units are used in a static
redundancy system, and majority logic is applied in
these units. Majority logic requires voting circuity
(VOTER).** The reliability of such systems never exceeds
that of the VOTER. In a dynamic redundancy system,
faults are either detected by the detector provided, or
corrected by the self-restoring function of a corrector
[3]. Extra component like detectors or correctors in
fault-tolerant circuits, form bottlenecks in terms of
reliability. A hybrid redundancy system combines the
static and dynamic redundancy systems and has the
same reliability drawbacks.

Because each VOTER or COLLECTOR [4],*** is
composed of two or more gates, the reliability of the
gates is lower than that of a single gate. Functional logic
circuits cannot provide higher reliability than a gate
used by these redundancy systems. To achieve reliability
higher than a single gate, the reliability of gate function
logic, which is the basic component of functional logic
circuits, must be raised. Conventionally, the increase of
reliability depends upon semiconductor technology.

The design presented here is for a gate function
module, which consists of a Fault-Tolerant Gate (FTG)
formed from conventional gates; the reliability of the
gate function module is higher than that of a single gate.

*Department of Electrical Engineering, Keio University,
Yokohama 223, Japan.
**A ‘‘Voter” is a decision circuit for majority logic that has
odd inputs.
***A “Collector” is a circuit similar to a Voter. Its output is
determined by both the masked signals from a detector and signals
from a comparator.

Journal of Information Processing, Vol. 3, No. 3, 1980

To realize the higher reliability, correct logical operation
should occur in an FTG even if inputs fail. This paper
presents a design scheme for FTGs that increases the
reliability of gate function logic as a basic component of
logic circuits. AND, OR, NOT, NAND, NOR, and
Exclusive OR FTG designs have been made. The
reliability improvement and the application to functional
logic circuits are discussed. Results show that a fault-
tolerant logic circuit that has greater reliability than a
single gate can be easily realized with FTGs. It has been
proved that highly reliable fault-tolerant computers
also can be realized by a design adopting ultra reliable
FTGs.

2. Fault-Tolerant Gates (FTGs)

An FTG is a new logic element that has optimal
redundancy of both I/O signal lines and gate function.
The concept of an Error Correcting Code (ECC) is
taken into account in the FTGs error correction.

2.1 Principles of Fault-Tolerant Gates

It is assumed that an input vector, as well as an output
vector, includes both m actual data lines and n redundant
data lines. For example, where m=1 and n=4, two bit
errors can be corrected in a five-bit vector, because the
number of vectors is two, and the Hamming distance is
five.

Generally, up to ¢ bit errors can be corrected by a
Hamming distance greater than 2¢+1 [5].

An FTG is a combinational circuit that can produce a
correct output vector in logical operation, even if the
input vectors include errors.

An example of a NAND-FTG (two input vectors) and
its logic symbol are shown in Fig. 1. An example of an
error correction in a NAND-FTG (two input vectors)
is shown in Fig. 2 and described in Table 1.

In the example, the input/output vector consists of
three bits (one data bit and two redundant bits).

The relation between the data bit and redundant bits is

120

dy —
Ry = © 1 3 3
Ao Tl [do FT.G.
HH C Roy —
d § — Ro 3
2
Ry HEH J
[= C |
C: Combinatorial Circuit
(a) Logic Structure (b) Symbol of a NAND-FTG
Fig. 1 An Example of a NAND-FTG (2 input vectors) and its
logic symbol.

A —0
Ry

N o PR

Ry

R j:

Dj: P —

J ‘:33 Roz
—
— D —
3 —

Fig. 2 Logic diagram of a NAND-FTG (2 input vectors).

Table 1 An Example of error corrections in a Fault-Tolerant
NAND (2 input vectors) Gate.

Input Vector Input Vector Output Vector

di Ry, Ry d; Ry, Ry do Roi R
0 0 0 0 @ 0 1 1 1
1 1 © ® o 0 1 1 1
® 0 0 0 ® 0 1 1 1
1 1 © © 1 1 0 0 0
1 © 1 1 © 1 0 0 0
0 0 @ 1 1 © 1 1 1
Notes: 1. d, and d, are input data bits. R,,, R,,, R,, and R,,

are redundant input bits.

2. d is output data bit. Ry; and R,, are redundant
output bits.

3. *“O” means error bit.

determined by a generator polynomial. After careful
consideration, described in Chapter 3, G(x)=x*+x+1
has been adopted as the generator polynomial. The
generator polynomial determines two vectors, (000) and
(111), as correct words.

Y. Takerulsi and M. IKEDA

A correct output vector can be produced, even if each
input vector includes up to one error bit.
Input/output vectors have the following patterns.
@oo0
0@o }Words are regarded as a (000)
00D
vector.
Also

©11
1901 }Words are regarded as a (111) vector.
110

If any combination of the above six input vectors,
including one-error bit, is the input to an FTG, the FTG
will produce a correct output vector.

The design process of FTGs that have minimum

hardware and maximum redundancy is as follows:

(i) To determine the redundancy of input/output
lines. (m data bits, n redundant bits)

(ii) To determine a generator polynomial taking into
consideration the number of gates required to
realize an FTG.

In the next chapter, concrete design examples of

FTGs are shown.

3. Design Examples of Fault-Tolerant Gates

When considering simple interfaces between FTGs
in terms of the combination of the number of data lines
and the number of redundancy lines, the combination
of one data line with more than one redundancy line
makes simpler hardware for an FTG possible than in
the case of other combinations.

The simplest combination is one data bit plus two
redundancy bits.

Clearly, the use of G(x)=x*+x+1 as a generator
polynomial is reasonable. The generator polynomial is
adopted for the following reasons:

(i) A one-bit error correction in an input vector

needs more than a three-bit vector length.

(i) A circuit to generate a data bit, and a circuit to

generate redundancy bits, have the same
structure by the use of G(x)=x?+x+1 as the generator
polynomial.

(iii) A data bit and the redundancy bits do not have

to be distinguished.

AND, OR, NOT, NAND, NOR and Exclusive OR
FTGs are designed with a data bit and two redundancy
bits used as a vector, and G(x)=x>+x+1 used as the
generator polynomial. A design for a NAND-FTG will
be described first because of its simple logical design.
(1) NAND-FTG (two input vectors)

The logical operation of an output data bit is
equivalent to that of the output redundancy bits because
of the use of G(x)=x>+x+1.

do=Ry; =Ry, ()]

The logical operation truth table shown in Table 1

A Novel Approach to Fault-Tolerant Logic

transforms into the following Boolean equation.
dy=d,-R,;+d,-R;,+R,,-Rj;+d,-R;,
+d,-R;;+ Ry, Ry, ()]
A NAND-FIG (two input vectors) is designed with
the use of equations (1) and (2). The number of gates
required to realize the FTG is 21.*
(2) NOR-FTG (two input vectors)

The output data bit do is expressed by the Boolean
equations:

do=Ro, =Ry, 3)
do=(al'Rn+31‘R12+E11‘R1i)
x(dy Ry 4+d;-Ry+ Ry Ry) O]

To reduce the number of gates required to realize the
FTG, Eq. (4) is transformed into:

dy=(d,+R,)-(d,+R3)-(R;; +R,3)
x(d;+R;)-(d2+ R23) (R + Ry). ®
A NOR-FTG (two input vectors) is designed with the
use of Egs. (3) and (5), as shown in Fig. 3.
(3) OR-FTG (two input vectors)
The output data bit d, is expressed by the Boolean
equations:

do=Roy, =Ry, (6)
dy=d; R\ +d,-R,+R;-Ry;+d,- Ry,
+dy Ry + Ry - Ry,)

D D———_Rm

D o

Fig. 3 Logic diagram of a NOR-FTG (2 input vectors).

Because an FTG with three input vectors can be

*It is assumed that the maximum number of inputs to a normal
gate is nine.

121

realized with gates that allow up to nine inputs, it is
assumed that the average number of inputs for a gate
in an LSI is three.

R ——
Ry

Ria

dq do
R

Rz

Fig. 4 Logic diagram of an OR-FTG (2 input vectors).

The OR-FTG (two input vectors) design uses Eqs. (6)
and (7), as shown in Fig. 4.
(4) AND-FTG (two input vectors)

The output data bit d, is expressed by the Boolean
equations:

do=Ro; =Ry, 3
do=(d; Ry, +d,-R;3+ Ry *Ry3)
X(dy Ry +dy- Ry + Ry - Ryy).)]

To reduce the number of gates required, Eq. (9) is
transformed into:

do=(d,+R;1)-(d;+R;3)-(R;; +R,3)
x(dy+Ry1)-(dy+ Ry3) (Ra1 +Ryp). (10)
An AND-FTG (two input vectors) design uses Eqgs.
(8) and (10), as shown in Fig. 5.
(5) Exclusive-OR-FTG

The output data bit d, is expressed by the Boolean
equations:

do=R01=Roz, (1 1)
do=(d;*Ry;+d;-Ry2+ Ry Ry3)
@®(dy Ry +d,y-Ryz+ Ry - Ryy). (12)

An Exclusive OR-FTG design uses Eqgs. (11) and (12),
as shown in Fig. 6.
(6) NOT-FTG
do=Ro1 =Ry, 13)
dy=d,-R,+R,-R,+d,-R,. (14

122

di
Ry

Ry

da
Rai

= D

'iDo—GD_——’%z

RH
Ry
-
dq do
Ryt §
Rap
|
‘I RD]
RD'Z

Fig. 6 Logic diagram of an Exclusive OR-FTG (2 input vectors).

A NOT-FTG design uses Eqs. (13) and (14), as shown
in Fig. 7.
(7) NAND-FTG (five input vectors)

The d, for the NAND-FTG (five input vectors) is
expressed by Boolean Eqgs. (15) and (16):

Y. TAkerust and M. IKEDA

dy
R

Rip o

Roa

Fig. 7 Logic diagram of a NOT-FTG

o)

i

do=Ry, =Ry, (15)

dy=d,-R,,+4d,-R,+R, ‘R,
+d, Ry +dy Ry + Ry Ry,
+d;-R3;+d;-R3,+ Ry, Ry,
+ds Ry +dy Ry +Ryi Ry,
+ds-Rs;+ds-Rs;+Rs(-Rs,, (16)
(8) Other FTGs
The number of required gates to realize each of the
following FTGs (two input vectors) is equal to the

number of gates in a NAND-FTG (two input vectors).
Boolean equations are:

3 3
3 Q 3
B
a

3 3
dyo=Ry, =Ry, 17
dy=d,-R,;+d,-R;+R,,-R,;

+d, Ry, +d, Ry, + Ry, -R,,. (18)

The number of gates required to realize FTGs from
(1) to (6) are compared in Table 2.

A close relationship exists between the number of gates
and reliability. Generally, a greater number of gates
decreases reliability. Increasing the number of gates for
an FTG increases the possibility of a failure propagat-
ing into the FTGs in succeeding stages. However, the
probability that an FTG can survive is greater than the
probability of normal gate failure, because of its built-in
restoring function. The reliability of FTGs will be dis-
cussed in the next chapter.

4. FTG Reliability

Is it possible to make an FTG that has greater
reliability than the individual gates used? The answer
to this question will be provided after investigating the
reliability of such FTGs as a NAND-FTG (two input

A Novel Approach to Fault-Tolerant Logic

123

Table 2 The number of gates required for realizing an FTG.

AND-FTG OR-FTG NOT-FTG NAND-FTG NOR-FTG XOR-FTG
Logic circuit 2 input vectors 2 input vectors 2 input vectors 2 input vectors 2 input vectors
No. of gates Ix7=21 3x7=21 3x4=12 Ix7=21 3x11=33

Ix7=21

vectors), an Exclusive OR-FTG (two input vectors), and
a NOT-FTG.
(1) NAND-FTG (two input vectors)

It is assumed that R is the possibility that an FTG
can produce a recoverable output vector, even if each
input vector to the FTG includes up to one errorneous
bit; that P is the possibility of a gate failure; and that
Pd is the possibility of an error propagating into suceed-
ing FTGs. V is the possibility that two input vectors are
recoverable. Each input vector can tolerate up to one
erroneous bit, so ¥ is the summation of ¥V, V,, and V,,
where V is the possibility that two input vectors include
no errors, ¥, is the possibility that two input vectors
include only one erroneous bit, and V), is the possibility
that each input vector includes one erroneous bit. V is
expressed by:

V=Vo+V,+V,
=(1—Pd)5+6(1 — Pd)®- Pd+9(1 — Pd)*Pd?.

On the other hand, the possibility that there is no
failure in all 21 gates of the FTG is (1—P)?!. The
possibility that only one gate will fail in all 21 gates is
21C1-(1—=P)?°-P. The possibility that the FTG can
produce a recoverable output vector even if n gates
(2<n<7) fail in all 21 gates is

3.,C,(1— Pyt pr,

Thus, R, for the possibility that an output vector is
recoverable, is:

R={(1— Pd)®+6-(1— Pd)* Pd+9(1 — Pd)*- Pd?}
x{(1-P)*' +,,C,(1-P)*°-P

7
+3- Y ,C,-(1—=P)*' " P}
n=2

=(1—147P? + 1568 P> —8967P* + - - .)
x (1 —6Pd? +4Pd® —9Pd* — 12Pd’5 +4Pd®).

Pd, the possibility of a failure propagating into the
succeeding FTGs, is nearly determined by the number of
gates required for the FTG. Because propagated failures
are corrected by an FTG, the possibility of failure
propagating into succeeding FTGs can be neglected
when the following equation for Pd is taken into account:

Pd;=1—(1=P)"-[(1-Pd,_,)°+6-(1— Pd;_,)*
X Pd;_,+9-(1—Pd,_)*-Pd}_\],

where

Pd;_, is the possibility of a failure propagating into
the succeeding FTGs (two input vectors). Generally,
Pd;_, and P are so small (1> Pd;_,>0, 1> P>0) that
only Pd;_, and P need be considered, with Pd?_,,
Pd} |,---, Pd® | and P%P3,---, P7 being neglected.

In this case, Pd; is Pd;=7-P. In order to estimate the
possibility R, that an FTG can survive, the possibility
of propagation failure Pd is assumed to be:

N
Pd=7 P,

where, N is the total number of gates for the FTG. The
total number of gates is shown in Table 2.

N of a NAND-FTG (2 input vectors) is 21.

N of an Exclusive OR-FTG (2 input vectors) is 33.

N of a NOT-FTG is 12.

To pessimistically compare the reliability R of a
NAND-FTG with that of a normal gate, Pd in R of a
normal gate is evaluated as zero. The comparison is
shown in Table 3.

(2) Exclusion OR-FTG

R of the possibility that an Exclusive OR-FTG can
survive is estimated in the same manner as for the
NAND-FTG:

R={(1—=Pd)*+6-(1—Pd)’ - Pd+9-(1 — Pd)*- Pd*}
11
x{(l—l’)33+3- y ~1,C,,-(1-P)33""-P"}
n=1
=(1—363P24+6292P3—59895P* 4 - - -)
x (1 —6Pd*+4Pd*+9Pd*— 12Pd® + 4Pd®).
Where, Pd=11P.
The R of a normal gate is compared with that of an

FTG in Table 4. The Exclusive OR gate is assumed to
be composed of three gates.

Table 3 Reliability comparison between a NAND-FTG (2
input vectors) and a normal NAND gate.

Normal NAND gate q NAND-FTG
S e | p— | S
p R=(1-Pr-a) | R=(12147P1)-(1-6P0%)

0 |099 0.956

10° 099 0.99956

10 |0.9939 0.99999559

10° | 099999 0.9999999559

10° |0.999939 0. 999999399569

107 |0.9999399 0.99999999939559

0% |0.99999399 | 0.9999999999999559

10° |0.999999999 | 0.999999999999999559

124

Table 4 Reliability comparison between an Exclusive OR-FTG ‘

and a normal Exclusive OR gate.

Probability of
a Gate Failure

Normal Exclusive OR

>

Exclusive OR-FTG

::::”: 3

P R=01-Pr(1-P0)* | R=(1-363PY)- (1-6 Pd?)
02 |og 0.691
10" | 0997 0.99891
0% | 09997 0.99998911
10° 0.99997 0.9993998911
10° 0999997 0.999999998911
10" | 09999997 0.99999999998911
10° 0.99399997 | 0.99999999999989
10° | 0999999997 | 0,999999999999969

Pd for the normal gate is pessimistically regarded to

be zero.

(3) NOT-FTG

R of a NOT-FTG is:
R={(1—-Pd)*+3-(1 - Pd)*. Pd)}
x {(l —P)1243. f: +4C,- (1 ——P)“"'-P"}
n=1

=(1—48P24272P3—180P*+ .. .)
x (1-3Pd*+2Pd%).

The evaluation of R is shown in Table 5. The

advantageous reliability of FTGs is shown in com-
parisons of Table 3 and 5. If the probability of gate
failure, P, is greater than 1072, the tables indicated

Table 5 Reliability comparison between a NOT-FTG and a

normal NOT gate.
Normal NOT gate NOT-FT6
o e | — o >t
p | R=-P)I-Pd)| R=(1-48PN1-3Pd")
10’ 099 0.9904
10° | o999 0.99990
10t | 09999 0.99999904
10° | 099999 0.9999999904
1 0-6 0.999999 0.999999999904
107 | 09999999 0.99999999939904
| 0_8 0.99999999 0.9999999999999390
10° | 0999999999 | 0.9999993999999999

Y. TAKerun and M. IKEDA

that the reliability of the FTG is lower than that of the
single gate. It is generally assumed that failures of
electrical elements depend on the Poisson distribution
[6]. Applying this assumption to the failure of a gate,
probability P of a gate’s failure is expressed by the
equation:

P=1—e"*T,

Where, 1 is the failure rate of the gate. The critical
probability of P=10"2 has been investigated using this
equation. The probability of a normal gate failure is
from 30 FIT to 300 FIT, assuming A=10"7 (=100 FIT)
(failures/hour) and time T is T=10° (hour) to satisfy
P=10"2, This indicates that 1% of gates will fail
at time T'=10° (hour), after testing all gates to deter-
mine that there is no error in any gate at time 7=0.
However, when the probability of gate failure is less
than 102, the reliability of an FTG gate configuration is
significantly increased. For example, when using gates,
the reliability of which is 1 FIT (A=10"%), to make an
FTG, the probability of FTG fatal failure is P=10"6 at
T=10° (hour), and the probability of gate failure is P=
10~*. When the probability of gate failure is less than
10™* (i.e., i. mission duration time T is sufficiently short
to satisfy this or, ii. the failure rate of a gate is small),
the reliability of the FTG consisting of the gates is
further improved. For example, when the probability
of a gate is P=10"", the reliability of an FTG composed
of the gates is P=10"12, This means that a gate module
can be made that has a failure rate of 10~3 FIT; on the
other hand, that of the primitive gate is 100 FIT for the
assumption T=1.

5. Relation between Reliability and Redundancy

To reduce the number of input-output signal lines,
the ratio of redundancy lines to actual data lines must
be improved.

Considering three NAND gates (each NAND gate
has two inputs), three redundancy bits per three data
bits and employed for each vector, the redundancy bits
are determined by G(x)=x3+x+1 as the generator
polynomial, and the amount of hardware to realize the
three NAND redundant gates increases above that
required for three NAND-FTGs, in which two
redundancy bits per data bit are employed for each
vector. Thus, the reliability in the case where three
redundancy bits per three data bits are employed as a
vector cannot be improved. Where three redundancy
bits per four data bits are employed as a vector for four
NAND gates (two input vectors), much more hardware
is needed than in the above cases. The greater amount of
hardware in such cases decreases reliability, in general,
because only a one-error bit correction capability per
vector is in the hardware. Thus, multiple error-bit
correction must be provided for each vector to increase
reliability. For example, when four redundancy bits per
data bit are provided for each vector, up to two bit

A Novel Approach to Fault-Tolerant Logic

errors per vector can be corrected for an FTG. To
demonstrate the fault tolerance of an FTG, as shown in
Fig. 2, the FTG is compared with both an existing voting
(Fig. 8) and the improved voting circuit (Fig. 9) for the
classification of fault-occurrences in logic circuits.
Fault-occurrences are classified as follows:

Level 0: No faults occur in a logic circuit.

Level 1: A new fault occurs in a logic circuit.

Level 2: A fault is propagated to a logic circuit.

Level 3: A new fault occurs in a logic circuit, and a
fault is propagated to a logic circuit.

Level 4: A fault is propagated to each input vector of
a logic circuit. An input vector consists of
more than one input.

Level 5: A fault occurs in a logic circuit, and a fault
is propagated to each input of the logic
circuit.

Level 6: More than one fault occurs in a logic circuit,

or more than one fault is propagated to

each input of the logic circuit.
The voting circuit can tolerate conditions up to Level 2.
The improved voting circuit can tolerate conditions up

—_

R
dy
Ry 4

Rm

d : .
RII_L:D

Rog

Fig. 8 An Example of a Voting NAND (2 input vectors).

Function Unit Voter
d =2 T i 1
IR !
R” =gl s :
glz? o ; ' do
Ry; uill i :
Ry L
. RD|
Roa

Fig. 9 An Example of the improved Voting NAND (2 input
vectors).

125

to Level 3. The FTG proposed in this paper can tolerate
conditions up to Level 5, owing to efficient error correc-
tion. The complexity is the same as the improved voting
circuit, and delay is one stage less. The voting circuit
has 309, fewer gates than the FTG, but also has one
extra gate delay.

6. Application of FTGs

A fault-tolerant, Full-Adder design is proposed using
the FTGs. The number of gates for the Full Adder and
its reliability will be discussed. Fig. 10 shows arrange-
ments for Full Adders. Circuits (b) and (c) each have
fewer gates than (a). It is not easy to make fault-tolerant
functional logic (FTL) with a minimum amount of
hardware. The use of the FTG shown in Chapter 3—(8).
makes it possible to reduce the number of gates required
for an FTL like Full Adder. Circuit (a) shown in Fig. 10
consists of 231 gates, circuit (b) 129 gates, and circuit
(c) 129 gates.

The reliability of Full Adder (c) will be discussed. It is
assumed that the probability of no error and one bit
error in S'is R, and in C, is R,. Assuming there are no
errors in all input vectors (A, B, Ci), R, and R, are
expected to be:

R, =(1—363P>+6292P3 — 59895P* 4 . . .),

R, =(1-363P>46292P>—59895P* + . . 9)
x{(1=P)°+3(1=P,)*-P}(..R,=1~P)),

Ry=(1—-147P*+1568P% —8967P* + - - -),

R,=(1—147P%+1568P>—8967P* + - .)
x{(1=P)*+3(1~P,)* P}

3
(30),

(b) Structure (2)

F.A. R
3) Ry
e e G U
Ry (21)3 3

Ry
(c) Structure (3)
Fig. 10 Examples of a Fault-tolerant Full Adder.

126

Assuming, Ry=1—Py and Ry,=1-P,:
Rs=(1—147P%+1568P*—8967P*+ - - -)
x{(1=P3)* (1= P)*+3(1—P3)*-(1-P,)*- P,
+3(1—P,)%-(1—Py)* - P,
+9(1=P3)*-(1=P,)*- P3Py},
Rs=R,-R,=1-2P,,
Re,=R,-R;-R,-Rs=1-3P,—-2P,.

Thus, when assuming the failure rate per gate is 10
FIT and time T=1, R, and R, are:

Rs=0.9999999999999274
R(,=0.9999999999998833.

The high reliability of the Full Adder results from the
error-correcting capability of up to one bit error per
input vector of each FTG.

As described in Chapter 4, a fault occurring in an FTG
seldom affects the probability of a propagation failure
to succeeding FTGs. Thus, the probability that an FTG
cannot survive depends almost completely on only the
probability of FTG failure, and less on the probability
of propagation failure from FTG in preceding states.
For example, the probability of propagation failure to/
from NAND-FTG (two input vectors), is Pd=7-P,
where P is the probability of conventional gate failure.
Assuming the probabilities of propagation failure in any
FTG node are equal, the reliability of the total system
is RY, where R is the probability that an FTG can
survive, and N is the number of FTGs. However, the
following two points have to be considered in designing
an FTL:

(1) The propagation delay time of an FTG (two
stage- gate delay time except for an Exclusive
OR-FTG)

(2) Fan-out limitation

When using G(x)=x?+x+1 as the generator poly-
nomial, fan-out is limited to 1/6.

Relevant to (2), the fan-out limitation can be lightened
by the use of higher-gain amplifiers in I/O stages.

The reduction in reliability caused by the use of such
amplifiers is Pd=NP/3+ Pa, where N is the number of
gates, P is the probability of gate failure, and Pa is the
probability of amplifier failure.

7. Fault-Tolerant Computers

An Arithmetic Logic Unit (ALU) is a complicated
logic circuit. In order to produce a Fault-Tolerant ALU,
a design scheme using FTGs is reasonable in terms of
both reliability and the amount of hardware required.
When making a 4-bit Fault-Tolerant ALU with FTGs,
the amount of hardware needed is about 20 times that
needed for a normal 4-bit ALU. Assuming 10 FIT to
failure rate per gate, and 7'=1, the failure rate of the
ALU is 0.002 FIT.

By contrast with the proposed design, a design that
directly applies error correction to an ALU by the use

Y. TAkerun and M. IKEDA

of a less redundant code, such as three redundancy data
bits per four data bits, cannot obtain such high reliability.
The fault-tolerancy of the ALU is lower than that of the
proposed ALU that is composed only of FTGs because
of the increased amount of redundancy hardware.
FTGs can also be used in memory systems; the reliability
and amount of hardware required for this usage is now
under investigation. In the future, FTGs will be used
for data buses and peripheral storage units. A very large
scale integration circuit of a million FTGs employing
normal gates whose failure rate is assumed to be 10 FIT
and time T=1, will have a failure rate of less than 100
FIT. Ultra reliable computers can thus be realized by the
use of FTGs.

8. Conclusion

Ultra reliable gate function logic can be realized by the
use of FTGs composed of gates that have a reliability
greater than that of the individual gates used. A circuit
composed only of FTGs requires over 20 times the
amount of hardware that a normal circuit requires, but
its reliability is significantly improved. For example, if
100 FTGs, each composed of normal gates with a
failure rate of 100 FIT per gate, are employed to realize
an FTL, the failure rate of the total circuit can be
improved to a few FIT. If a gate failure occurs, the failed
gate has to be removed from a nonredundant circuit
to achieve recovery. However, even if gate failure occurs
in an FTG, the FTG can prevent the failed signal from
spreading, and will continue to operate normally. The
recovery action comes from the error-correction
capability of the FTG.

This capability seems to resemble the recovery action
of a neuron in the human brain; i.e., like a self-restoring
organ.

Thus, ultra reliable computers can be realized by the
use of FTGs.

Acknowledgements

We wish to thank Professor Hideo Aiso at Keio Uni-
versity and Messrs. T. Nakagawa, S. Sugihara, Y.
Adachi, J. Tsuji and J. Miyazaki for their advice.

We would like to acknowledge our colleagues at Keio
University for their enthusiastic interest and suggestions.

References

1. Touma, Y. Fault-Tolerant Computing and the Associated
Technologies, Journal of the IECE of Japan. 59, 4 (1976) 359-368.
2. Y. H. SU., Stephen, et al. An Overview of Fault-Tolerant
digital system architecture, Proc. NCC, 46 (1977) 19-26.

3. Fuiki, M. et al. Reliability in Electronics, Korona press in
1978.

4. P. T., DeSOUSA, et al. Modular redundancy without voters
decreases complexity of restoring organ, Proc. NCC, 46 (1977)
801-806.

5. Mivazawa, Y. et al. Coding theory, Shokodo press in 1973.
6. ALGIRDAS AVIZIENIS, Fault-tolerance: The Survival
Attribute of Digital Systems, Proc. The IEEE, 66, 10 (1978) 1109-
1125.

