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rtificial  neural
networks (ANNSs) are attempts to mimic, at
least partially, the structure and functions
of brains and nervous systems. The human
brain contains billions of biological neu-
rons whose manner of interconnection
allows us to reason, memorize, and com-
pute. Advances in VLSI technology and a
demand for "intelligent" machines have
created a strong resurgence of interest in
emulating neural systems for real-time
applications.

The same factors have spurred research
on artificial intelligence (AI) over the last
few years. Current Al technology based on
knowledge-based expert systems has relied
heavily on symbolic manipulations. The
approach’s major limitation is that the
knowledge base is a static set of rules cast
by human experts. At the inevitable error--
prone interface between the human experts
and the Al programmers, the programmers
must cope with fuzzy information.

Artificial neural networks, on the other
hand, are trained by successive examples in
a real-world environment. As the ANNs
adapt to the changes in their environment,
they develop their own internal rules. One
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Artificial
neural networks
can be
implemented with
simple analog
devices
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1. Functional model of an artificial neuron.
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advantage of ANNS is their ability to han-
dle fuzzy or incomplete data. Current
neural network models include:

» Hopfield Networks

» Hamming Networks

* Widrow’s Adaline

« Rosenblatt’s Single-layer Perceptrons

* Werbos’s Backward Error Propagation
for Multi-layer Perceptrons

o Carpenter and Grossberg’s Adaptive
Resonance Theory (ART)

e Hinton and Sejnowski’s Boltzmann
Machines

« Kohonen’s Self-Organization Feature
Map

¢ Fukushima’s Neocognitrons

« Kosko’s Bidirectional Associative
Memory (BAM)

In particular, ANNs employ an enormous
number of communication links among the
processing elements (PEs) to perform
distributed parallel processing (PDP).
Because of the robust (or fault-tolerant)
nature of ANNs, a few degraded or non-
functional PE’s will not greatly affect the
overall operation of the neural network.
The speed and robustness of ANNs make
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them very attractive for a variety of appli-
cations, such as pattern recognition, robotic
control, and combinatorial optimization.

An artificial neuron can be modeled as a
multi-input nonlinear thresholding device
with weighted interconnections, or synap-
ses (Fig. 1). The cell body of an electronic
neuron is represented by a nonlinear ampli-
fier (e.g., a high-gain amplifier), while the
synapses are represented by variable resis-
tors (Fig. 2). The dynamics of each neuron
is governed by an ordinary first-order
differential equation (or difference equation
for discrete-time systems) which describes
the motion of the neural network. By
applying Kirchoff’s current law at the input
node of the amplifier, the differential equa-
tion describing the time evolution of the
analog circuit is:

VAU)

where U; is the input voltage to the ith am-
plifier; AU, is the external noise to the ith
amplifier; V; is the output voltage of the
ith amplifier; C; is the input capacitance of
the ith amplifier; r; is the input resistance
of the ith amplifier; G is the conductance
of the resistive interconnect between the ith
and jth amplifiers; f is the transfer function
of the nonlinear amplifier; and N is the
number of neurons in the network.

As shown earlier, the basic electronic
neuron has two main components: resistive
interconnects (synapses) and a processing
element (cell body). Signals received from
other neurons in the form of potentials
across the resistive interconnects are col-
lected by summing currents. Each synaptic
weight or resistive interconnect is modeled
as a passive resistor with conductance G.
Based on its input neural voltages U, the
PE produces an output signal V according
to its nonlinear transfer function f, and the
output signal V is then propagated to other
neurons.

Building Blocks

One of the most important aspects of neu-
ral networks is their learning capability,
whereby synaptic strengths between neu-
rons are adaptively changed according to
an algorithm. Such learning could be su-
pervised (e.g., Hopfield’s) or unsupervised
(e.g., Kohonen’s). Learning algorithms
requiring high resolution in interconnection
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strengths need high precision circuitry for
weight adjustments. Such complex circuits,
in turn, requires more silicon area. In
general, analog circuits are used where
only moderate precision is required (even
though high precision analog circuits can
be built at the expense of more silicon
area). Conversely, digital circuits are used
for high resolution weight representation.
For example, the back-propagation learning
algorithm requires at least an 8-bit weight
representation for a large problem of prac-
tical interest. Therefore, analog circuits are

most appropriate for learning algorithms
with high fault-tolerance and requiring
moderate or low precision, while digital
circuits are used for high-resolution learn-
ing algorithms.

The neural components can be either
deterministic or stochastic, leading to
deterministic and stochastic neural net-
works. There are basically four methods
for building stochastic neural networks,
i.e., through: (1) stochastic I/O function in
the PE, (2) stochastic synaptic strength, (3)
external input noise, and (4) a combination

2. Circuit schematic of an artificial neuron.
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3. An enhancement-mode n-channel MOSFET and its characteristics for small V..
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4. An n-channel JFET and its linear characteristics for small V.
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5. A CMOS switch and its characteristics in the active region.
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of the above. However, within the scope of
this paper. we shall focus on deterministic
conductance circuits and deterministic PEs.
These devices are analyzed using the Sim-
ulation Program with Integrated Circuit
Emphasis (SPICE) program.

Variable Linear Conductance Devices

As discussed earlier, synaptic weights can
be simulated by variable linear resistors.
Nonprogrammable neural networks with
fixed-value resistors are relatively small
and easy to fabricate, but they have very
limited applications. Resistors as small as
0.25 ym x 25 pm have been built [5].
With a density of 4 resistors per square
micrometer, a total of 4 x 10% resistors can
be packed into a | cm’ chip. Research into
the design and implementation of program-
mable interconnection weights include a
binary interconnection circuit by Graf and
Jackel [6]. Their VLSI chip has 4,416
digital circuits and it performs an evalua-
tion of 44 billion connections per second
(cps). However, the digital interconnection
circuits occupy excessive silicon area, and
they also require digital-to-analog convert-
ers (DAC) at the outputs. This extra over-
head makes the digital approach unattrac-
tive for VLSI of ANNs.

We know that a human brain has about
100 billion neurons, and that each neuron
(or nerve cell) is typically connected to
approximately 10,000 other neurons. Since
biological neurons respond only at the
millisecond time scale (much slower than
transistors), it is apparent that the computa-
tion abilities of our brains arise from the
large number of neurons and the huge
number of interconnection links. Due to the
physical limitation of a two-dimensional
silicon wafer, electronic neural networks
have to rely heavily on "simple” models of
neurons and synapses.

Perhaps the simplest active devices for
simulating the variable resistor are the
junction field-effect transistors (JFETs) and
the metal-oxide-semiconductor field-effect
transistors (MOSFETS). Both the JFET and
the MOSFET act as voltage-controlled
lincar resistors for small values of V
(drain-to-source voltage). operating in the
active region. Figure 3 shows an n-channel
enhancement-mode MOSFET and its char-
acteristics. The output resistance of the
device is controlled by the input gate-to-so-
urce voltage. V. and in this case, the
resistance rzmges;from 16.5 kQ to 370 kQ.
As V, increases. the resistance decreases.
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The MOSFET behaves as a linear resistor
if the output voltage lies between approxi-
mately -0.5 volt to +0.5 volt. This is a
feasible range since we intend to keep the
operation of the neural network in the
millivolt range so as to reduce power
dissipation.

The depletion-mode device has the same
characteristics as the enhancement-mode
device except that V,, is negative. Similar-
ly, an n-channel JFET also acts as a volta-
ge-controlled linear resistor for small val-
ues of Vpg (Figure 4). When V,, varies
from O to -4 volts, the resistance varies
from 11 kQ to 15 kQ. The linear region
lies approximately from -1.0 volt to +1.0
volt. Thus the JFET has a wider dynamic
range than the MOSFET. It is also possible
to utilize MOS switches and floating active
resistors for simulating variable linear
resistors. Both devices can be implemented
using a single MOSFET. However, a more
practical approach is the CMOS switch
(transmission gate) based on a pair of
complementary MOSFETs, as shown in
Figure 5. The resistance of the CMOS
switch is controlled by the voltage at the
bulk of transistor Ml and the gate voltage
of transistor M2. The linear resistive region
lies approximately from -1.0 volt to +1.0
volt. In our example shown in Figure 5,
the output resistance is approximately
equal to 3.7 k€. The CMOS switch has a
major advantage over a single MOSFET
switch or a floating active resistor. In
particular, the problem of clock feed-
through is eliminated through the parallel
connection of the n- and p-channel devices,
which require opposing clock signals. Con-
sequently, the dynamic range is greatly
increased as a result of the complementary
devices. In our previous approach, we used
the analog variable resistor techniques for
simulating the synaptic strength [3]. Basi-
cally, there are four types of a variable
resistor: a switched-capacitor circuit, a
switched-resistor, a switched-ladder resis-
tor, and a voltage-controlled resistor. The
purpose of these devices is to linearly vary
the flow of current controlled by a clock
pulse or an input voltage.

In a switched-capacitor circuit, the value
of resistance R depends on an input clock
frequency f,, and a capacitor C, where R
= 1/(f,C). As the clock frequency and
capacitance increase, the resistance de-
creases. Figure 6 shows the switched-capa-
citor circuit and its characteristics. In this
example where f,, = 1 kHz and C = 1 nF,
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6. A switched-capacitor circuit and its SPICE output.
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7. A switched-resistor circuit, its equivalent representation, and its SPICE output.
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the resistance is approximately equal to |
MQ with an input voltage range of -5.0 to
+5.0 volts.

A switched-resistor circuit is composed
of a fixed R, resistor. an analog switch.
and a capacitor. The value of the resistance
R is determined by the ratio R = R/d
where d is the duty cycle of the switch. As
the duty cycle decreases. the value of R
increases. Figure 7 shows the switched-res-
istor circuit, its equivalent representation,
and its output characteristics. In our exam-
ple where R, = 1 kQ and d = 0.5, the
resistance is approximately equal to 2 kQ
with an input voltage range of -5.0 to +5.0
volts.

A switched-ladder resistor is composed of
n analog switches in parallel with nR to
2"'R, resistors in series. as shown in Fig-
ure 8. The total resistance is controlled by
the analog switches. As a result. there are
(2" - 1) possible values ranging from 0 to
(2" - DR, ohms. For example, if all of the
switches are turned "oft". the total resis-
tance from one end to the other becomes
(2™ - R, ohms.

Analog devices with high accuracy can
be built at the expense of larger silicon
area and higher power dissipation. For
example. we could utilize an elaborate and
precision voltage-controlled linear resistor
introduced by Czarnul [2]. This circuit is
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8. A switched-ladder resistor network.
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based on a matched pair of FETs (Fig. 9).
The linear resistance is determined by the
gate voltage V, of transistor T, and the
floating voltage source V_ of transistor T,.
The output current I, is determined by I, =
BV.(V. - Vg). where B is the transcon-
ductance parameter dependent on the fabri-
cation and the geometry of the transistors.
The output of this device is linear in the
range of 0 to +2 volts, where the resistance
is approximately equal to 1 MQ.

Similar approaches include a CMOS
voltage-controlled linear resistor with a
wide dynamic range by Youssef, New-
comb. and Zaghloul [4]. A pair of comple-
mentary enhancement-mode MOS transis-
tors is used 1o offset the nonlinearity pres-
ent in the circuit. Figure 10 shows the
voltage-controlled linear resistor circuit and
its characteristics. Although this circuit
provides high resolution resistance with a
wide dynamic range. the circuit requires
several external voltage sources which
makes it expensive to implement. This
overhead is hardly justified since neural
networks are fault-tolerant requiring only
moderate accuracy.

Table T summarizes the performance of
the variable linear resistors. The approxi-
mate conductance is calculated using the
linear least squares data fitting method
over the input voltage range. The inverse
of conductance yields the output resistance
of the device. The error margin is calculat-

ed as the average error in the approxima-
tion of the data.

Deterministic Processing Elements

The processing elements are the key com-
ponents of a neural network. The PEs
collect and process all the incoming signals
propagated from other neurons through the
synapses. Based on a nonlinear activation
function. the neuron may "fire” it the sum
of input signals exceeds a certain threshold,
or it may be turned "off” if not. In gener-
al. there are three basic nonlinear transfer
functions for artificial neurons, i.e., high-
gain limit, linear threshold, and sigmoid
(Fig. 11). The high-gain limit (or step)
function used for configuring associative
memory in the Hopfield neural networks.
Hamming networks, and Boltzmann ma-
chines can be easily implemented by an
analog comparator. Figure 12 shows an
analog comparator and its transfer function,
where the threshold of the step function is
controlled by the reference voltage V.
Such a neuron based on an analog compar-
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ator is often called a two-state neuron.

The linear threshold activation function is
commonly used in the single-layer feedfor-
ward networks such as ADALINE and
single-layer perceptrons. The linear func-
tion with a fixed threshold can be easily
implemented by a noninverting operational
amplifier circuit (Fig. 13). The voltage gain
of the amplifier is determined by A, = (R,
+ R,)/R,. The bounds of the voltage gain
are defined by means of the lower satura-
tion point (LSP) and the upper saturation
point (USP), respectively, where LSP =
-V.R/R, +R,), and USP =V _R/(R, +
R,).

X twin cascaded inverting amplifier can
be used to implement a linear function
with adjustable threshold (Fig. 14). The
output voltage of the circuit is determined
by V, = Vi(Ry/R)) - V(1 + Ry/R)) and the
threshold 9 is determined by q = V_ (R, +
R,)/R,. The LSP and USP of the adjust-
able threshold circuit are given by LSP =
VR, + R)/R, - V(R/R,) and USP =
VR, + R)/R, + V. (R//R,). The linear
circuit with adjustable threshold allows
considerable flexibility, since not only is
the threshold adjustable, the range of linea-
rity is also adjustable.

Another nonlinear function widely used
in the sigma-pi and Hopfield neural net-
works is the continuous sigmoid function.
In multi-layer feedforward associative
networks (or backpropagation networks),
the learning process depends on the delta
rule [7] which requires a differentiable and
nondecreasing function such as the sigmoid
transfer function V = 0.5 tanh(AU), where
A is the voltage gain, and U and V are
input and output voltages, respectively. An
approximate sigmoid function with a fixed
gain can be realized by a high-gain invert-
ing amplifier in cascade with a unity gain
inverting amplifier (Fig. 15a).

A more useful sigmoid circuit with vari-
able gain control uses an unbuffered volt-
age comparator with a positive feedback
loop and double cascaded inverters with
negative feedback loops (Fig. 15b). The
unbuffered comparator provides an approx-
imate sigmoid transfer function, while the
negative feedback loops of the inverters act
as gain controls. Therefore, the gain of the
sigmoid function can be increased by
increasing the ratio r = R¢/R, = R /Ry, i.e.,
the gains of the inverters. Figure 16 (top)
shows a detailed schematic of the variable-
gain sigmoid circuit. SPICE simulations of
the variable-gain sigmoid circuit based
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CMOS operational amplifiers were per-
formed for r = 100, 250, 500, and 1000.
The results are plotted in Figure 16 (bot-
tom). It is observed that as r increases, the
sigmoid curve approaches a high gain limit
function; lowering r results in a gentler
slope sigmoid curve. When r = 0 (i.e., zero
gain), the output voltage is zero regardless
of input.

Why Simple Analog Circuits?

First, analog circuits are faster than digital
implementations in terms of speed-to-amo-
unt of hardware ratio. Second, analog
circuits provide us a better understanding
of the true analog nature of biological
neural networks. Third, since these analog
components require less circuitry, it is
possible to pack more components onto a
single VLSI chip. The simplicity of these
devices also make them very attractive for
rapid VLSI prototyping. Fourth, since the
analog conductance devices and processing
elements operate in small voltage swings,
they dissipate less power, and thus reduces
the problem of heat transfer.

A survey of current approaches seems to
indicate a tradeotf between the complexity
of the circuits and their size in silicon. If
more functionality (e.g., higher resolution,
learning capabilities) is desired, fewer
circuits can fit onto a single chip. The
solution usually depends on the application
of such a neural network. Current analog
neural networks have computational speeds
of 10° to 10" interconnections per second
(ips), a much higher rate than digital cir-
cuits can achieve, according to recent
DARPA studies. Although board-level
emulators are more flexible and easier to
program than the special-purpose neural
hardware, they only operate at a speed of
10° to 107 ips.

Many researchers are also looking at
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Table |
Switch Type Voltage Range (V)] Resistance (Q) | Average Error

Switched Capacitor -5.0 to +5.0 1M 1.4 E-12
Switched Resistor -5.0 to +5.0 2K 6.6E-10
CMOS Switch -1.0to +1.0 37K 7.2 E-6

Enhancement-NMOS
Vgs=0 -0.5 to +0.5 3TM 8.4 E-7
Vos=1 -0.510 +0.5 482K 1.1E-6
Vgs=2 -0.5 10 +0.5 245K 1.1E-6
Vgs=3 -0.5 to +0.5 16.5 K 1.1E-6

N-Channel JFET

Vgs=0 -1.0 to +1.0 STM 8.4 E-7
Vgs=-1 -1.010 +1.0 482 K 1.1IE-6
Ves=-2 1.0 to +1.0 245 K T1E-6
Vgs=-3 -1.0 to +1.0 165 K 1.1E-6
Voltage Controlled Resistor 0.0102.0 1.2M 1.1E-9
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optical computing to eliminate the prob-
lems faced by metallic interconnects. Opti-
cal neurocomputers are more accurately
called electro-optic neural networks be-
cause they utilize considerable electronics,
especially in the I/O. For example, Caul-
field et. al. [8] introduced a hybrid optical-
ly programmed electronic (HOPE) neural
network. The network is programmable
through a Page Oriented Holographic
Memory (POHM) which could store up to
10° bits (or 1000-by-1000 pixel image)
with random access time as low as 1 nano-
second. Advantages of optical computing
will include higher switching speeds, re-
duced mutual interference, no fan-out
constraints, and no capacitive loading
effects as in the case of metallic intercon-
nects. Currently, the switching speed of
optical computers is on the order of 10" to
10"* seconds, compared to 10° to 10"
seconds in electronic computers. Similarly,
the communication bandwidth of optical
computers is on the order of 1 to 10? giga-
bits per second, while that of electronic
computers is on the order of 10 to 10°
megabits per second. The revolution in
optical computing—and its potential benef-
its—was succinctly stated by Professor Kai
Hwang of University of Southern Califor-
nia, a renowned expert in computer archi-
tecture. He predicted that the next genera-
tion artificial neural systems (ANS) will be
based on 3D wafer scale integration (WSI)
technology with optical interconnections.
In general, a biological neuron can be
modeled as a very high fan-in/fan-out
processing element, whereby a neuron is
typically connected to several thousands of
neurons. Consequently, the wiring of the
large number of resistive interconnects on
a two-dimensional surface of a silicon
wafer represents the major bottieneck for
implementing electronic neural networks.
Current efforts to achieve such high inter-
connectivity or to remedy this problem are
based on several approaches discussed
above. In this paper, we briefly described
several possible analog circuits for building
electronic neural networks based on dis-
crete and integrated devices. We believe
that the moderate resolution of these "sim-
ple” analog components are sufficient for
implementing neural networks such as
Hopfield’s model and Fukushima’s Neo-
cognitron paradigm. This research also
represents a step toward fulfilling the need
for real-time neural computing through the
VLSI of simple analog components.
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At low airflows (0-200LFM) typical of micro-
processor and logic applications, DELTEM™
heat sinks provide near-equal thermal perfor-
mance when tested versus aluminum heat sinks
of similar size.

Less Mass, Lower Weight,
Low Cost

Less mass and 40% lower weight reduce the risk
of stress-induced solder joint fatigue for gullwing
packages. Low unit cost for our DELTEM™ heat
sinks provides improved thermal performance
for cost-effective PQFP and PLCC packages.
Call our Application Engineering Department
today at 617/245-5900 for DELTEM™ plastic
heat sinks for PQFPs and PLCCs.
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