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A Neural Network Parallel Algorithm for Channel
Assignment Problems in Cellular Radio Networks

Nobuo Funabiki, Member, IEEE, and Yoshiyasu Takefuji

Abstract—A parallel algorithm for channel assignment prob-
lems in cellular radio networks is presented in this paper. The
channel assignment problem involves not only assigning channels
or frequencies to each radio cell, but also satisfying frequency
constraints given by a compatibility matrix. The proposed paral-
lel algorithm is based on an artificial neural network composed
of nm processing elements for an n-cell-m-frequency problem.
The algorithm runs not only on a sequential machine but also
on a parallel machine with up to a maximum of nm processors.
The algorithm was tested by solving eight benchmark problems
where the total number of frequencies varied from 100 to 533.
The algorithm found the solutions in nearly constant time with
nm processors. The simulation results showed that the algorithm
found better solutions than the existing algorithm in one out of
eight problems.

I. INTRODUCTION

ECENT demand for mobile telephone service has been
Rgrowing rapidly. At the same time, the electromagnetic
spectrum or frequencies allocated for this purpose are limited.
This makes solving the problem of channel assignment more
and more critical. The channel assignment problem involves
efficiently assigning channels or frequencies to each radio cell
in the cellular radio network, while satisfying the electromag-
netic compatibility constraints.

This paper considers the following three conditions as the
electromagnetic compatibility constraints as in [5]:

1) the cochannel constraint: the same frequency cannot be
assigned to certain pairs of radio cells simultaneously;

2) the adjacent channel constraint: frequencies adjacent in
the frequency domain cannot be assigned to adjacent
radio cells simultaneously;

3) the co-site constraint: any pair of frequencies assigned to
a radio cell must have certain distance in the frequency
domain.

In 1982 Gamst and Rave defined the general form of the
channel assignment problem in an arbitrary inhomogeneous
cellular radio network [S]. In their definition, the electro-
magnetic compatibility constraints in an n-cell network are
described by an n x n symmetric matrix which is called
compatibility matrix C. Each nondiagonal element ¢;; in C'
represents the minimum separation distance in the frequency
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domain between a frequency assigned to cell #¢ and a
frequency to cell #j. The cochannel constraint is represented
by ¢;; = 1, and the adjacent channel constraint is represented
by ¢;; = 2. ¢;; = 0 indicates that cells #¢ and #7 are allowed
to use the same frequency. Each diagonal element c;; in C
represents the minimum separation distance between any two
frequencies assigned to cell #4, which is the co-site constraint,
where ¢;; > 1 is always satisfied. The channel requirements for
each cell in an n-cell network are described by an n-element
vector which is called demand vector D. Each element d; in D
represents the number of frequencies to be assigned to cell #:.
When f;;; indicates the kth frequency assigned to cell #i, the
electromagnetic compatibility constraints are represented by:

|fir = fi1] = cij,
diand1 =1, -,djexcept i = j, k = 1. (09

fori=1,--.nj=1,,nk=1--,

The channel assignment problem in the cellular radio net-
work is finding a conflict-free frequency assignment with the
minimum number of total frequencies, where C' and D are
given.

Consider a channel assignment problem in a four-cell net-
work in [9]. Fig. 1(a) shows the compatibility matrix C' and
the demand vector D. Fig. 1(b) shows the network topology
corresponding to the compatibility matrix C. The vertex
represents a cell, and the edge represents the existence of
the cochannel/adjacent constraints between two cells. For
example, a frequency within distance 4 from the frequency
assigned to cell #1 cannot be assigned to cell #2 because
of c12 = c21 = 4. Also any two frequencies assigned to cell
#4 must have at least distance 5 because of ¢4y = 5. The
minimum number of total frequencies in this problem is 11
because cell #4 requires at least 11 (= 1+ 5 x 2) frequencies.
Fig. 1(c) shows the optimum solution in this problem, where
frequency #10 is assigned to cell #1, frequency #3 to cell
#2, frequency #4 to cell #3, and frequencies #1, #6, and
#11 to cell #4.

In the simplest form of the channel assignment problem, the
cochannel constraint only is considered, and the problem is
known to be equivalent to a graph coloring problem [4]. Since
the graph coloring problem is known to be NP-complete [1],
the computation complexity of searching for the optimum so-
lution in the channel assignment problem grows exponentially
with the problem size.

Many researchers have investigated the channel assign-
ment problem in the cellular radio network [2]-[10]. In
1982 Gamst and Rave summarized four existing sequen-
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Fig. 1. A four-cell channel assignment problem and the optimum solution.
(a) A four-channel assignment problem. (b) The corresponding network
topology. (c) The optimum solution with 11 frequencies.
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tial approximation algorithms [5]. The first algorithm has
four different versions by combining two different assign-
ment strategies—the frequency-exhaustive assignment and the
requirement-exhaustive assignment, and two different order-
ing strategies—the node-degree order and the node-coloring
order [2]. The second algorithm repeatedly assigns frequencies
according to the assignment difficulty of requirements [3].
The third algorithm uses the heuristic geometric principle of
maximum overlap of denial areas. It states that a frequency
should be assigned to cell whose denial area has the maximum
overlap with the existing denial area of that frequency. The
fourth algorithm is based on the graph theory, where the clique
number plays a key role. In 1986 Gamst proposed procedures
to generate lower bounds on the number of total frequencies
(8]. In 1989 Sivarajan et al. proposed an O (n?) time sequential
heuristic algorithm, based on the first algorithm introduced by
Gamst and Rave [9]. Sivarajan et al. applied their algorithm
to several problems, where the values of total frequencies in
solutions are shown without any actual assignment results.

II. NEURAL NETWORK APPROACH

This paper proposes a parallel algorithm based on the
artificial neural network model approach. The neural network
model is composed of a large number of massively connected
simple processing elements. The processing element is called
a neuron because it performs the function of a simplified
biological neuron model. A processing element has an input
and an output. The input of a processing element is connected
with outputs of several processing elements, including the
processing element itself.

From several proposed neuron models, the hysterses Mc-
Culloch—Pitts neuron model [23] was adopted in this paper
where the input/output function is given by:

Vi=1, if U; > UTP(upper trip point)
=0, if U; < LTP(lower trip point)
unchanged otherwise )]

Note that U; and V; are the input and the output, respectively,
of the ith processing element. It has been shown empirically
that the hysteresis McCulloch—Pitts neuron model not only
provides faster convergence to the solution than the sigmoid
neuron model used by Hopfield [11], but also improves
the convergence frequency by suppressing the undesirable
oscillatory behavior of the McCulloch—Pitts neuron model
[15].

The change of the input Uj is given by the partial derivatives
of a computational energy function E(V,---,V,) which is
called a motion equation:

dU;  9E(Vy,---,Vy)
dat av; ) ©)

Note that n is the number of required processing elements in
each problem. The energy function E represents the distance
between the current state of the neural network system and
the solution state of the neural network system. The energy
function is determined by considering all constraints in the
problem. The goal of the neural network model for solving
combinatorial optimization problems is to minimize the en-
ergy function E. Theorem 1 in the Appendix states that the
motion equation always forces the state of the neural network
system, composed of the hysteresis McCulloch—Pitts neurons,
to converge to a local minimum [21], [24].

The neural network model for solving a combinatorial
optimization problem was first introduced by Hopfield and
Tank [11], [12]. Although Wilson and Pawley [13], and
Paielli [14] criticized the stability and the solution quality
of the Hopfield neural network model, Takefuji and Lee
pointed out that the decay term of the motion equation in the
Hopfield model disturbs the convergence of the neural network
system under some conditions [21]. More than 20 successful
neural network applications for solving NP-complete and
optimization problems have been reported in the last two years
[16]-[36]. In each case, the McCulloch—Pitts neuron model
or the hystersis McCollough—Pitts neuron model was used
without the decay term.

In 1991 Kunz proposed the first Hopfield neural network
model for solving the special case of the channel assignment
problem in the cellular radio network [10]. Kunz did not
consider the adjacent channel constraint, and limited the co-
site constraint to ¢;; = 2. The Kunz neural network model has
several disadvantages. First of all, it uses the slow sigmoid
neuron model and the harmful decay term in the motion
equation. In addition, careful tuning of the coefficients in the
motion equation is needed for each different problem, and
careful gain control of the sigmoid function has to be provided
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in order to obtain valid solutions. Also, Kunz did not discuss
the convergence frequency of the neural network system which
is always controversial in neural network research. These
drawbacks of the Kunz model prevent us from solving the
general channel assignment problem in the cellular radio
network, for practical reasons.

As previously mentioned, the neural network model pro-
posed in this paper is composed of the hystersis McCul-
loch—Pitts neurons without the decay term. In order to improve
the frequency of the global minimum convergence, the four
heuristics introduced in Section IV were used. The proposed
neural network model was tested by eight benchmark problems
where the same set of coefficients and parameters was used
in the problems.

III. NEURAL NETWORK REPRESENTATION

The parallel algorithm is based on a two dimensional neural
network model. Fig. 2(a) shows the neural network represen-
tation for solving the channel assignment problem in Fig. 1.
The frequency assignment to each cell requires 11 processing
elements because there are 11 candidates or frequencies. A
total of 44 (= 4 x 11) are required for this problem. Generally,
a total of nm processing elements is required for solving
an n-cell-m-frequency problem, where n is the number of
radio cells and m is the total number of frequencies. The
output of the 7jth processing element V;; indicates whether
or not frequency #j is assigned to cell #:. The nonzero
output (V;; = 1) indicates that frequency #j is assigned to
cell #:. The zero output (V;; = 0) indicates that frequency #j
is not assigned to cell #:. Fig. 2(b) shows the solution state
of the neural network system, where black squares represent
the nonzero output and white squares indicate the zero output.

To satisfy channel requirements, a total of d; processing
elements among m processing elements for cell #:¢ must have
nonzero output, because a total of d; frequencies are required
for cell #i:

iviq_di

q=1

is zero if and only if d; processing elements for cell #i
have nonzero output. In the co-site constraint, if frequency
#q within distance c;; from frequency #j(|j — q| < ci;) is
assigned to cell #i, frequency #j must not be assigned to
cell #i:

J+(eii—1)
Vig
g=j=(cii—1)

9#]
1<q<m

is nonzero if the assignment of frequency #j to cell #:i
violates the co-site constraint.

In the cochannel constraint and the adjacent channel con-
straint, if frequency #¢ within distance c¢;;, from frequency
#3(|5 — al < cip) is assigned to cell #p for ¢;, > 0 and p # ¢,
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Fig. 2. Neural network representation for the channel assignment problem
in Fig. 1. (a) 4 x 11 processing elements for the channel assignment problem
in Fig. 1. (b) The convergence of 4 x 11 processing elements to a solution.

frequency #; must not be assigned to cell #i:

n Jt(eip~1)

IR

=l gzi—(eip-1)

b
S0 isesm

VP‘I

is nonzero if the assignment of frequency #j to cell #1
violates the cochannel constraint and/or the adjacent channel
constraint.

The motion equation of the ¢jth processing element in the
n-cell-m-frequency problem is given by:

dUs; -
=-4 Vig —d;
w - (5s)

J+(cii—1) n Jt{cip—1)
- B Z Viq + Z VP‘I
9=j—(¢ii—1) 3’;1 q=j—(cip—1)
13?55]»% ¢ip>0 1Sagm

“4)
The first term (A-term) forces d; processing elements among
m candidates for cell #¢ to have nonzero output, where the
corresponding frequencies are assigned to cell #:. The second
term (B-term) discourages the zjth processing element from
having nonzero output if the assignment of frequency #j to
cell #: violates the three constraints mentioned previously.
A and B are constant coefficients (A = B = 1). The energy
function F for the channel assignment problem is given by
considering (3) and (4):

=1 \¢g=1
n m j+(ci~1) i J+(§—1)V
Vigt+ pa | v
+BZZ a=j~=(cii—1) 2=l ami=(eip-1) Vij-
i=1j=1 lé’fém cips0  1Zasm
®)



FUNABIKI AND TAKEFUJI: CHANNEL ASSIGNMENT PROBLEMS IN CELLULAR RADIO 433

IV. HEURISTICS FOR THE GLOBAL MINIMUM CONVERGENCE

As shown in the Appendix, only the local minimum con-
vergence is guaranteed in the neural network model, although
we must consider the global minimum convergence. In order
to increase the frequency of the global minimum convergence,
the following four heuristics have been introduced empirically.

1) The A-term saturation heuristic: the following function
is used for the A-term in order to confine the A-term between
two values:

—Af (i Vig - di> (©)

g=1

where f(z) is A_max if > A_max, A_min if 2 < A_min,
and x otherwise. A_max and A_min are the constant upper
and lower bounds, respectively of the A-term (A_max = 5,
A_min = 5).

2) The omega function heuristic: two forms of the B-term
are used periodically in the motion equation:

if (tmodT) <w
J+(cii—1) J+(cip—1)

Vigt X X Vg

— ) > Vs
B a=i—(csi-1) Peh a=i=(eip-1) ij
1<q:<1m cip>0 1Sagm
else
J+(cii—1) n J+(cip—1)
_B Vig+ X2 Voo )
9=j—(e;;—1) =l g=j—(cip-1)
L pHEL P
1<q:<]m cip>0 1Sasm

where ¢ is the number of iteration steps, and T and w are
constant parameters (T = 10,w = 5).

3) The hill climbing heuristic: the following term is added
to the motion equation:

+Ch<iviq—di) “(1-Vy) ®)

9=1

where h(z) is 1 if z < 0, and 0 if x > 0. C is randomly
chosen among 3, 4, and 5 in each iteration step to avoid
oscillation due to digital simulation, where otherwise, two or
more processing elements continue to have the same states.
The C-term encourages the ijth processing element to have
nonzero output if fewer than d; processing elements for cell
#1 have nonzero output and Vij = 0.

4) The input saturation heuristic: the input of the processing
element is confined between two values:

] max, if U;; > U max

U,‘j =
Uij = U_min, if U;; < U_min )]
where U/ max and U/ min are the constant upper and lower
bounds, respectively, of the input value U;; (I max = 30,
U min = —30).

V. PARALLEL ALGORITHM

The following procedure describes the proposed parallel
algorithm based on the motion equation in (4) with the four
heuristics, where the first-order Euler method is used. The data
set of coefficients and parameters are determined empirically.

DDSett=0,A=B=1,C=3,4,0r5T=10,w =5,
U max = 30, U min = —-30, UTP = 5, LTP = -5, and
T max = 500.

2) Randomize the initial values of input U;;(t) for i =
L,...,nand j = 1,...,m between 0 and U min. Assign
the initial values of output Vj;(t) for ¢ = 1,...,n and
j=1...,mto0Q.

3) Compute the change of input AU;;(t) based on the
motion equation in (4):

if (t modT) < w

m

AU,,J(t) = —Af( V;q(t) - dl)

q=
J+(eii—1) Vi (1) i j+(c§—1) Voul®)
i t)+ t
_B q=j—(z‘5z_z_l) q lz’,;i q=j‘(c1;p_1) pq ‘/”(t)
15‘1:27.1 cip>0 1<g<m
+Ch (Z Vig(t) = dl) (1 - Vis(1)) (10)
q=1
else
AUs(0) = —Af (Z Vig(t) - di)
g=1
j+(cii—1) n G+(eip=1)
“BlXY Vet X Violt)
P P as(m)
15327” cip>0 1<q<m
+ Ch (Z Vig(t) - di)u - Vii(t) 1)
g=1

4) Update input U;;(t + 1) based on the first-order Euler
method:

Uij(t +1) = Us;(t) + AU;(t) (12)
5) Use the input saturation heuristic in (9):
Ui;(t + 1) = Umax, if U (¢ + 1) > U max
Uij(t+1) = U min,  if Ug(t+1) < U_min.
(13)

6) Update output V;;(¢+ 1) based on the hysteresis Mc-
Culloch—Pitts neuron model:

Vij(t+1) =1, ifUy(t+1)>UTP
=0, if Ug;(t +1) < LTP

unchanged otherwise.

14
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7) Check the termination condition:

if ((i V','q - dl) = U) and (Vu(t) =1and
gq=1

J+(cii—=1) n J+(cip—1)

Vet XX W)y
q:j—(c,,:z—-l) P;l% a=j—(cip—1) — Y/
1sq<1¢§Jm Clpp>° 1Sagm

fori=1,.--,nand3j € {1,---,m}ort = T_max

then terminate this procedure, otherwise increment ¢ by 1, and
g0 on to step 2.

The state of nm processing elements for the n-cell-m-
frequency problem can be updated synchronously or asyn-
chronously. In this paper the synchronous parallel system is
simulated on a sequential machine. The synchronous parallel
system can be performed on up to a maximum of nm
processors. The following procedure/program outlines how to
simulate the synchronous parallel system using a sequential
machine as if the program were running on the parallel
machine:

Program parallel-simulator-on-a-sequential-machine

initialization of U;; and V;; for i := 1 to n and for j := 1

to m;

{***Main Program***}

while (a set of conflicts is not empty) do

begin

{***Updating all input values***}

forz := 1 ton do
for j := 1 to m do
Uz‘j = U,'j + AUij;

{***End of the first loop***}

{***Updating all output values***}

for¢:=1ton do
for j :=1to m do
If U;; > 0then Vj; := 1else Vj; := 0;

{***End of the second loop***}

end;

{***Main Program end***}

In the first loop, all input values U;; are sequentially
updated, while all output values V;; are fixed. Then in the
second loop, all output values V;; are sequentially updated,
while all input values U;; are fixed. It is equivalent to
simultaneously updating the values of all inputs and outputs.

VI. SIMULATION RESULTS AND DISCUSSION

To test the proposed parallel algorithm, the simulator was
developed on a Macintosh SE/30 and a Macintosh 1Ifx. The
program was coded in Turbo Pascal. Eight benchmark prob-
lems were examined where problems #1, and #3—#8 are

TABLE 1
SPECIFICATIONS OF SIMULATED PROBLEMS

Number of Number of

. . Compatibility Demand
Problem # Radl(:] Cells Freqt:nmes Matrix C Vector D
1 4 11 (&1 D,
2 25 73 Co D,
3 21 381 C3 D3
4 21 533 Cy Ds
5 21 533 Cy D3
6 21 221 (& Dy
7 21 309 Cy D,
8 2t 309 Cs Dy

taken from [9] and problem #2 is from [10]. Table I shows
the specifications of the problems, where the total number of
frequencies varied from 11 to 533. Figs. 1 and 3 show the
compatibility matrices and the channel requirement vectors
for these problems.

The number of required frequencies m must be determined
before simulating the system. In general, m is roughly deter-
mined by multiplication of the value of ¢;; and the maximum
value in the demand vector. Computing the lower bound of
required frequencies is equivalent to solving a k-colorability
problem in a graph which is NP-complete. If a problem is
not solved with the value of m, we must monotonically
increase it until the system finds a solution. Fortunately, in
our simulation we were able to start with the lower bounds
given from [9], and [10}. In order to accelerate the convergence
time in some problems, the frequency assignment was fixed
in a certain cell or certain cells with the largest number of
required frequencies. For example, in Fig. 1(a) cell #4 has
the largest element in the demand vector, so the frequency
assignment of cell #4 was fixed in our simulation. Fixing a
single cell frequency assignment can drastically reduce the
searching space and consequently the convergence time is
shortened.

To investigate the computation time and the convergence
frequency, 100 simulation runs were performed from different
random initial values of U;;(t) for each of the eight problems.
Table II summarizes the simulation results, and shows the
average number of iteration steps required to converge to
the optimum solution and the convergence frequency. Fig. 4
shows the distribution of the number of iteration steps required
to converge to the solution in two problems.

In problem #2, our neural network model found the solution
within 200 iteration steps, while the Kunz neural network
model required 2450 iteration steps to the solution [10]. Our
neural network algorithm achieves a significant improvement
in the computation time. In problem #38, our simulator found
better solutions than the best existing algorithms [9]. This
does not mean that our algorithm always finds better solutions
than the best existing algorithms. The simulation results in
Table II show that our neural network model converged to
the solution in a nearly constant number of iteration steps.
We conclude that with nm processors, the proposed parallel
algorithm finds a solution for an n-cell-m-frequency channel
assignment problem in a cellular radio network, in nearly
constant time.
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Fig. 3. Compatibility matrices and demand vectors in simulated problems. (a) Compatibility matrix Cs. (b) Demand vector Ds. (c) Compatibility matrix C'3.
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function and f(U;) is a hysteresis binary function:

VII. CONCLUSION

F(U) =1if U; > UTP

This paper proposes a parallel algorithm for solving channel

assignment problems in cellular radio networks. The parallel
algorithm is based on a neural network model composed

of nm processing elements for an n-cell-m-frequency prob-

0if U; < LTP
unchanged otherwise.

Proof: Consider the derivatives of the computational

energy E with respect to time ¢.

nm processors. Unlike conventional parallel algorithms, our
algorithm does not require a rigorous synchronization pro-

lem. The algorithm runs not only on a sequential machine,
but also on a parallel machine with up to a maximum of
cedure. Eight benchmark problems were examined in which
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our algorithm found the solution in nearly constant time

with nm processors. In one of the benchmark problems,
one algorithm found better solutions than the best existing

algorithms.
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APPENDIX
Theorem 1: The system always satisfies AE/At < 0

under two conditions such as AU;/At

y

AU;
At

)

AV;
AU;

= —AE/AV; and

Vi = f(U;) where E is the computational Liapunov energy
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Fig. 4. The distribution of the number of iteration steps required to converge
to solutions. (a) Problem #3. (b) Problem #6.

TABLE 11
SUMMARY OF SIMULATION RESULTS
Average Number of Convergence
Problem # Iteration Steps to Frequency to
Solutions Solutions
1 21.2 100%
2 294.0 9%
3 147.8 93%
4 117.5 100%
5 100.3 100%
6 234.8 79%
7 85.6 100%
8 305.6 24%

Vi(t + At) — Vi(¢)/Ui(t + At) — U,(t). It is necessary and
sufficient to consider the following four regions:

Region 1: U;(t) > UTP and V;(t) = 1

Region 2: LTP <U;(t) < UTP and V;(¥) = 1

Region 3: LTP <U;(t) < UTP and Vi(t) = 0

Region 4: U;(t) < LTP and V;(t) = 0.
In region 1: We must consider the four possible cases for
Ui(t + At):

(a) Ui(t+ At) > Ui(d)

(b) LTP < Ui(t + At) < Uy(t)

(¢) Ui(t+ At) < LTP < U;(t)

(d) Ui(t+ At) = U(p).

In (a)and (b), Vi(t + At) = Vi(t) = 1 = ﬁg"_ = 0. Therefore

AE/At = 0. In (d), AU;/At = 0 = AE/At = 0. In (c),
Vi(t + At) = 0 = AV;/AU; = 0 — 1/negative number > 0
and AU;/At < 0. Therefore AE/At < 0. It is concluded
that AE/At < 0 is always satisfied in region 1. Similarly, in
regions 2—4, AE /At < 0 is always satisfied. This completes
the proof. Q.E.D.
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