IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

139

A Parallel Improvement Algorithm for the Bipartite Subgraph Problem
Kuo Chun Lee, Nobuo Funabiki, and Yoshiyasu Takefuji

Abstract— Since McCulloch and Pitts proposed an artificial
neuron model in 1943, several neuron models have been in-
vestigated. This paper proposes the first parallel improvement
algorithm using the maximum neural network model for the bi-
partite subgraph problem. The goal of this NP-complete problem
is to remove the minimum number of edges in a given graph such
that the remaining graph is a bipartite graph. A large number of
instances have been simulated to verify the proposed algorithm,
with the simulation result showing that our algorithm finds a
solution within 200 iteration steps and the solution quality is
superior to that of the best existing algorithm. The algorithm is
extended for the K-partite subgraph problem, where no algorithm
has been proposed.

I. INTRODUCTION

HE goal of an optimization problem is to minimize

or maximize a cost function subject to constraints. A
polynomial time algorithm for finding a global minimum
solution has been in great demand on the solution quality and
the computation time. However, most of practical problems are
of the NP-complete or NP-hard type, where there are no poly-
nomial algorithms. Heuristics or relaxation of constraints have
been used to find reasonable solutions which are approximately
close to the global minimum solution.

Because the advances in VLSI technology make it possible
to build a large number of processors on a single chip, parallel
computation has attracted many researchers in recent years.
Unfortunately, the following problems must be solved in
parallel computation [1]:

1) How is a given problem partitioned into small sub-
problems which are independently executed on different
processors?

2) How is the termination condition determined in parallel
programming?

3) What is the most suitable parallel architecture for the
problem?

4) How are the executions in different processors synchro-
nized?

There is no general way to satisfy all requirements simul-

taneously.

The inherent parallelism in the neural network provides

a promising alternative for solving these problems. Since
McCulloch and Pitts proposed the simplified artificial neuron
model in 1943 [2], several neuron models have been investi-
gated. Hopfield and Tank [3] were the first to propose a neural
Manuscript received January 11, 1991; revised August 23, 1991.

K.C. Lee is with the R&D Department, Cirrus Logic Inc., Fremont, CA
94538.

N. Funabiki is with the Systems Engineering Division, Sumitomo Metal
Industries, Ltd., Osaka, Japan.

Y. Takefuji is with the Department of Electrical Engineering and Applied
Physics, Case Western Reserve University, Cleveland, OH 44106.

IEEE Log Number 9103812.

network for solving combinatorial optimization problems. The
gradient descent method seeks the local minimum of the
Liapunov energy function, E, which is given by the constraints
and the objective function in the problem. It is proved that
the state of the neural network system converges to the local
minimum. Although the final goal is the global minimum
solution, the near-optimum solution is practically acceptable in
NP-complete problems if the convergence time is reasonable.

This paper presents a parallel improvement algorithm for
the bipartite subgraph problem [4]. The goal of this NP-
complete problem is to find a bipartite subgraph with the
maximum number of edges of a given graph. An efficient
parallel algorithm for solving a general bipartite subgraph
problem has been desired for practical purposes [5]. Within our
survey, existing algorithms for the bipartite subgraph problem
can deal only with either a triangle-free graph with maximum
degree 3 [5] or a weakly bipartite graph [6]. A sequential
heuristic algorithm for the max cut problem, which is a similar
NP-complete problem, was proposed by Hsu [7]. If every edge
in a graph has the same weight in the max cut problem, it
becomes equivalent to the bipartite subgraph problem. The
performance of our algorithm is compared with that of Hsu’s
algorithm on a large number of instances.

II. THREE NEURON MODELS AND
THE NEURAL NETWORK APPROACH

A large number of simple processing elements are used in
the neural network. The processing element is called a neuron
because it performs the function of a simplified biological
neuron model. An output signal generated by one neuron
propagates to inputs of several neurons through synaptic links.
The linear sum of the weighted input signals determines the
new state of the neuron.

The first mathematical neuron model was proposed by Mc-
Culloch and Pitts and was based on the biological computation
model [2]. The input/output function is given by

Vi=fU)=1 ifU, 20 0 otherwise 0))
where V; and U; are the output and the input of the :th neuron,
respectively.

Hopfield and Tank [3] used the sigmoid neuron model,
which is a differentiable, continuous, and nondecreasing func-
tion. The input/output function is given by

@

where the parameter A is a constant gain which changes the
steepness of the sigmoid curve. ‘

The maximum neural network is used in this paper, which
consists of M clusters of N neurons. The total number of

Vi = 9(U) = (1 + tanh(\T})

1045-9227/92303.00 © 1992 IEEE

140

processing elements is M x N. One and only one neuron
among N neurons with the maximum input per cluster always
has nonzero output. The input/output function of the ith
maximum neuron in cluster m is given by

Vmi=1 if

Up,i = max{Upn," -, 0 otherwise.

©)

If there is more than one neuron with the maximum input in
any cluster, the neuron with the smallest subscript has nonzero
output. The outputs of the other neurons in the same cluster
become zero.

The change of U; is given by the motion equation of the ith
neuron. The motion equation in the Hopfield neural network
is given by [3]

Um,N};

au; U, OF

a ~— r 9V Q)
The decay term —U; /7 is known to disturb the convergence of
the system because it increases the energy function, E, under
certain conditions. Although many researchers use a large
value 7 to eliminate the undesirable effect, it is theoretically
and empirically suggested that the decay term should be
removed from the motion equation as shown in Appendix I.
Neural network models without the decay term have been
successfully used for several optimization problems [8]—{12].

III. BIPARTITE SUBGRAPH PROBLEM
AND NEURAL REPRESENTATION

The bipartite subgraph problem is defined as follows [4]:
Bipartite Subgraph Problem

Instance: Graph G = (V, E), positive K < |E].

Question: 1Is there a subset E' C F with |E’| > K such

that G’ = (V, E’) is bipartite?

The goal of this problem is to remove the minimum number
of edges from a given graph such that the remaining graph
is a bipartite graph. The problem can be mathematically
transformed into the following optimization problem.

Optimization Description:

N N 2
minimize Z Z Z Connection(z, y) Vs :Vy.i
z=1z#y i=1
2
subject Z Vei=1 forzx=1to N
=1

where N is the number of vertices, V,; € {1,0}. Note that
Connection(z,y) = 1 if there exists an edge between vertex
z and vertex y; otherwise, it equals 0. If V. ; = 1, vertex =
belongs to cluster 3, where the subscript i is either 1 or 2.

The N-vertex bipartite problem can be mapped onto the
Hopfield neural network with 2 x N neurons where it consists
of N clusters of two neurons. When we follow the mapping
procedure by Hopfield and Tank [3], the energy function with
the McCulloch—Pitts neurons or the sigmoid neurons is given
by

s AE TS 2§)

li=1 x=11=1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

©®)

N N 2
ZZZ onnection(z,y) Vs iVy.i

T =1

where V. ; is the output of the neuron representing vertex =
in cluster i assignment. In a valid solution each vertex must
be assigned to one of two clusters. In other words, either
of V1 or Vo must be 1 for vertex . This constraint is
realized by the first and second terms in (5). However, because
these two terms sometimes create invalid local minima in
addition to valid local minima, this energy function cannot
guarantee a valid solution even if the system converges to the
local minimum. There is no systematic method to tune three
coefficients except through a large number of experiments.

In order to alleviate the invalid local minimum problem,
the first two terms can be replaced by the local constraint that
each vertex be assigned to one of two clusters. The energy
function is given by

15w

N N2 ‘
+ 5 Z Z Z Connection(z, y)V; :Vyi. (6)

z=1y#z i=1

M

However, coefficients A and C still must be tuned and a valid
solution cannot always be guaranteed.

A new energy function based on the maximum neural
network is proposed in order to guarantee the valid solution
and avoid the coefficient tuning problem. The energy function
is given by

N 2

% Z Z Connection(z,y)Ve,iVy,: (7)
where V, ; = 1if U,,; = max{Uy 1, Uz 2}; otherwise it equals
0.If U, 1 = U, 2, the network sets V1 =1 and V;2 = 0.
U, and V ; are the input and the output of the zith neuron,
representing vertex in cluster i assignment. Because there is
always one cluster assignment for each vertex, the converged
state of the system is always a valid solution. Note that the
energy function in (7) is exactly the same as the cost function
in the bipartite subgraph problem for C' = 1. The motion
equation of the zith neuron for vertex x in cluster 7 assignment
without the decay term is given by

*MZ

dU,

N
= = -C Z Connection(z, y)Vy i ®)

y#z

The motion equation describes the synaptic links. The zith
neuron is communicated with the yith neuron for vertex y in
cluster 7 assignment where an edge exists between vertices
z and y. The maximum neural network can guarantee the
valid solutions. The proof of the convergence for the maxi-
mum neural network is given in Appendix II. The maximum
neural network not only realizes the parallel computation but
also solves the four problems of the parallel computation in
Section I:

1) Each neuron can be assigned on a different processor.

[EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

141

TABLE 1
COMPARISON BETWEEN HSU’S ALGORITHM AND THE MAXIMUM NEURAL NETWORK

5% 5% 15% 15% 20% 20% 25% 25%
Node size Hsu’s Max Net Hsu’s Max Net Hsu’s Max Net Hsu’s Max Net

10 2 2 6 6 6 6 9 10
20 8 8 24 25 26 28 41 41
30 19 20 49 50 52 56 76 80
40 36 36 90 90 96 99 140 143
50 50 53 128 135 143 149 208 216
60 78 80 191 195 210 218 296 304
70 102 107 246 254 282 282 410 417
80 125 132 311 330 363 367 536 536
90 158 162 390 405 445 459 676 683
100 185 195 478 494 553 564 823 836
110 218 227 582 595 657 686 1001 1005
120 262 267 691 695 790 801 1163 1190
130 308 317 803 819 940 943 1387 1391
140 354 371 929 947 1068 1080 1583 1593
150 403 412 1032 1060 1189 1206 1791 1818
160 462 476 1203 1218 1372 1393 2042 2064
170 512 520 1325 1348 1515 1552 2278 2314
180 566 580 1476 1502 1699 1719 2571 2578
190 647 646 1652 1681 1900 1930 2890 2902
200 698 703 1824 1860 2086 2146 3166 3177
210 770 785 2002 2037 2290 2332 3505 3505
220 842 851 2197 2228 2540 2561 3803 3837
230 909 914 2376 2400 2725 2756 4126 4193
240 975 1000 2584 2603 2954 3003 4511 4527
250 1083 1088 2817 2854 3213 3255 4859 4917
260 1147 1168 3018 3049 3461 3498 5242 5272
270 1223 1237 3239 3276 3753 3777 5602 5692
280 1287 1342 3486 3518 4010 4066 6051 6076
290 1426 1433 3735 3753 4319 4325 6487 6544
300 1494 1524 3978 4016 4548 4626 6929 6964

Each element in the table represents the number of embedded edges in a solution.

2) The algorithm can be terminated in the equilibrium state
where no neuron changes the output.

3) The algorithm can be implemented either on a sequential
machine or on a parallel machine with maximally 2NV
processors.

4) The algorithm does not require a rigorous synchroniza-
tion procedure.

The maximum neural network improves the solution quality
in a parallel computation until no further improvement can be
achieved.

IV. PARALLEL ALGORITHM WITH
THE MAXIMUM NEURAL NETWORK

The parallel algorithm is implemented in C on DEC3100
and in Turbo Pascal on a Macintosh SE/30. the following
procedure describes the parallel algorithm based on the first-
order Euler method.
0) Set t = 0.
1) Randomly generated numbers are assigned to the initial
values of V, ;(t) forz =1to N and i = 1 to 2, where
N is the number of vertices.

2) Evaluate values of V, ;(t) based on the maximum func-
tion forz = 1to N and s = 1 to 2.

Vei(t) =1
for i < 7,

if Uy i(t) > Ug,5(t)

0 otherwise.

3) Use the motion equation in (8) to compute AU, ()

N
AUz ; = — E Connection(z, y)Vy,i.
y#T

4) Compute U, ;(t) based on the first-order Euler method:

Uz’i(t + 1) = Uzyi(t) + AUz,i(t)
forzr=1to N and i=1to2.

5) If the system reaches an equilibrium state, stop the
procedure; otherwise increment ¢ by 1 and go to step
2.

We have tested the algorithm with 1000 randomly generated
examples of up to 300-vertex graph problems. We have used
exhaustive search up to 30-vertex graph problems on the
0(10°) searching space, where it is shown that the algorithm
can find the optimum solution. Table I shows a comparison
of the solution quality between Hsu’s algorithm and our
algorithm where the 5%, 15%, 20%, and 25% density graph
problems with up to 300 vertices have been examined. Note
that the density of an N-vertex graph is defined by the ratio
between the number of given edges and N(N —1)/2. For
each of the instances, 100 simulation runs were performed.
Table I shows that the proposed algorithm can find a better
solution than Hsu’s algorithm in any problem. The simulation
result also shows that the algorithm always converged to a

142 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

(b)
45 " n " " . s L L i
36 -
.g - -
3 27 4 o
A -
| -
¥ 18 o o
: -
g -
9 -
0 T y T T T T v T
0 20 40 60 80 100
Number of Renstion steps
)

Fig. 1. Thirty-vertex bipartite subgraph problem. (a) The original graph with 50 edges. (b) Hsu’s solution with 38 edges remaining.
(c) One of the maximum neural network solutions with 42 edges embedded. (d) Relationship between number of embedded edges

and the number of iteration steps.

solution within 200 iteration steps, which suggests that the
computation time is not sensitive to the problem size. The
proposed parallel algorithm is superior to Hsu’s algorithm in
terms of solution quality and computation time.

Fig. 1(2) shows the original graph of the 30-vertex graph
problem. Parts (b) and (c) of the figure show the solutions
by Hsu’s algorithm and by our algorithm, respectively, where
black circles and gray circles represent two disjoint sets for
vertices. Fig. 1(d) shows the typical transition pattern of the
number of edges embedded in a solution by our algorithm.
Figs. 2 and 3 show, respectively, a comparison of the solution
quality of the two algorithms and the frequency distribution
of the convergence by our algorithm in the 30-vertex graph
problem.

V. THE K-PARTITE SUBGRAPH PROBLEM

Another advantage of the proposed algorithm is that it can
be easily applied to the K-partite subgraph problem. Unfor-
tunately, no algorithm for the K-partite subgraph problem

Hsu's solwion
16 o -
§ 12 4 -
- -1 -
£
Sy
8 - -
4 - -
. :
30 32 34 36 38 40 42 44
The nvmber of embedded edges
Fig. 2. The relation between the frequency and the number of embedded

edges for the problem in Fig. 1.

has been reported. The K-partite graph is a graph where the
vertices are partitioned into K-disjoint sets and no edge exists
between two vertices in the same set. The goal of the K-

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

Frequency

26 34
The aumber of iteratiod steps

42 50

Fig. 3. The distribution of the convergence iteration steps for the problem
in Fig. 1.

Fig. 4. One of the tripartite subgraph solutions with 50 edges embedded.

partite subgraph problem is to remove the minimum number
of edges for a given graph such that the remaining graph is
a K-partite graph. The bipartite subgraph is a special case of
the K -partite subgraph problem (K = 2).

The energy function of the K-partite subgraph problem is
given by

N N
Z Z Z Connection(z,y)Ve.iVy,: (9)

z=1y#z i=1

C
E=+

and the motion equation for the zith neuron of vertex z in

cluster 7 assignment is given by

dUs,;
dt

N
=-C 2 Connection(z, y)Vy. ;.
y#T

(10)

Note that the (10) is the same as (8). The parallel algorithm
in Section IV can be used for the K-partite subgraph problem-
where the cluster size is to be changed from 2 to K. Figs. 4
and 5 show the 3-partite and 4-partite subgraph solutions for
the 30-vertex graph problem in Fig. 1 where all the edges are
embedded.

143

Fig. 5. One of the quadripartite subgraph solutions with 50 edges embedded.

VI. CONCLUSION

This paper has presented a parallel improvement algorithm
for the bipartite subgraph problems based on the maximum
neural network. The simulation result shows that the algorithm
finds better solutions than the best existing algorithm. With the
advantage of the parallelism the algorithm always finds a near-
optimum solution in a nearly constant time. The algorithm can
be easily applied to the K -partite subgraph problem, where no
algorithm has yet been proposed.

APPENDIX |
REMOVAL OF DECAY TERM
In the Hopfield neural network the symmetric conductance
matrix W with zero diagonal elements must be used to guar-
antee the convergence to the local minimum. The Liapunov
energy function, E, is given by

E() =~ 3 Y w0 - L)

g V() v (?)

Vi(t)
OFa PROLO

4 0

(A1)

where Ep(t) = Ep(Vi(t),Va(t), -+, Va(t)). The motion
equation of the ith neuron is given by

dUs(t) v - Ui(t) _ 0Ep(t) _ Uift)
dt - zj: w’h]‘/J(t) + Il - av; T
(A2)

where 7 is a time constant. For a given problem, the energy
function, E, is constructed by the necessary and sufficient
constraints and the cost function. The energy function is

144 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

mapped onto the Hopfield neural network. Note that the energy
function is not unique for a problem. The energy function
determines synaptic strengths w;; between neurons and the
constant bias I; in (A2). Hopfield proved that the function E
is a Liapunov function based on the motion equation in (A2).
Because of the last term,

/\ZR

in (A1), a mapping becomes very difficult and the local mini-
mum solution is displaced slightly by the constant A. It
is assumed that a very high gain is used to simplify the
mapping. In the high-gain limit A — oo, the Liapunov func-
tion becomes the function Ep without the last term in (A1),
and the motion equation of the ith neuron is given by
dU;(t)/dt = —OEp(t)/dV;(t). When the function Ep is
used, the decay term —U;(t)/7 must be excluded in the motion
equation. If the gain) is not infinite, the Liapunov function
must include the last term,

Vi(t)

V(1)) dv (1),

0

Vi(t)

iTE / V@) av (@),

in (Al). If the high-gain limit A — oo is used, the decay term
—U;(t)/™ must be excluded in the motion equation. Theorem
1 shows that the decay term increases the energy Ep under
certain conditions. In other words, Ep is not the Liapunov
function of the system.

Theorem 1: The decay term —U;(t)/7 in the motion equa-
tion of the ith neuron increases the energy Ep(t) when

‘Z dV(i) (dlgft))z

and if either (U(t) > 0 and dV;(t)/dt < 0) or (U;(t) < 0
and dV;(t)/dt > 0) is satisfied.

Proof: Consider the derivatives of the energy Ep with
respect to time ¢:

dEp(t) ~—~dVi(t) OEp(t)
dt 4 dt Vi)

ZdV(t) (Ui(t) d({;t(t))

where 0Ep(t)/0Vi(t) is replaced by

dVi(t) Us(t) dVi(t) dUi(t)
dt T _1_ dt dt

_ : dvi(t) Ui(t) dU;(t) dVi(t)\ { dU;(t)
T4~ dt 7 Z(dt dUi(t))< dt)

dV

i

dvi(t) Ui(t)
a

%

The first term,
dvi(t) Us(t)
dt T’

i

can be positive, negative, or zero. The second term,

(E8)(%)’

is always negative or zero because the output V;(¢) = f(U;(t))
is a nondecreasing function. The following condition is true:

dVi(t) Ui(t) Z(ggg;) (azt{;t(t))2 >0

dt T
Z dV(t) dui(t)*
dU; (t dt

and if one of the following condition is satisfied: (U;(t) > 0
and dV;(t)/dt < 0) or (U;(t) < 0 and dV;(¢)/dt > 0). Under
such a condition the derivatives of Ep(t) with respect to time
t must be positive: dEp(t)/dt > 0. Therefore, the —U;(t)/
term increases the energy function under such conditions,

which means Ep(t) is not a Liapunov function for the system.
Q.E.D.

when

thUt
‘Z)()

APPENDIX I
CONVERGENCE PROPERTY OF THE
MAXIMUM NEURAL NETWORK

Lemma 1 and Lemma 2 are introduced to prove that the
proposed system is always allowed to converge to the optimal
or near-optimum solution.

Lemma 1: dE/dt < 0 is satisfied under two conditions,
such as dU;/dt = —0E/9V; and V, = f(U;), where f(U;) is
a nondecreasing function.

Proof:
dE _ < dU; dV; 3E__Z AU * av;
dt 4~ dt dU; 9V, ~ =\ dt) dU;
where E/0V; is replaced by dU;/dt (condition 1) < 0
where dV; /dU; > 0 (condition 2). Q.E.D.

Lemma 1 points out that the state of the system finally
reaches an equilibrium state. The input/output function of a
maximum McCulloch—Pitts neuron actually behaves like a
binary neuron with dynamically changing the threshold. The
function follows a nondecreasing function requirement. In
Lemma 2, the convergence of the maximum neural network
for the bipartite subgraph problem is given.

Lemma 2: dE/dt < 0 is satisfied under two conditions,
namely

dU,; OE

it oV,

nd

w

Veu=1 if Uy = max{U,1,U; 2}

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 1, JANUARY 1992

and

Upi 2 Us 0 otherwise.

B

for i > j;

Proof: Consider the derivatives of the computational
energy E with respect to time £

dE
dt

dU,; dV,; OF
:;E dt dU,,; 0Vy,

AU, \> dVy,;
_;Z(dt) du, ;

where OE [0V, ; is replaced by —dU,,;/dt (first condition).
Let dU, ;/dt be

Ug,i(t + dt) — Uz i(t)
dt '

Let dV,:/dU, ; be

Vei(t + dt) — Vaa(t)
Upalt +dt) — Uga(t)

Let us consider the term

Z AU, i\ dVy,
N\ "dt) dU,;

k3

for each module separately. Let U, o (¢ + dt) be the maximum
at time ¢ + dt and U, 3(t) be the maximum at time ¢ for the
vertex :

Up,o(t + dt) = max{U,,1(t + dt), Uz o(t + dt)},
Ur,b(t) = maX{Um,l(t)7 U:c,?(t)}'

It is necessary and sufficient to consider the following two
cases: 1) a = b and 2) a # b. If the case 1) is satisfied, then
there is no state change for the vertex z. Consequently,

Z AU, * dVs;
; dt de,i

145

must be zero. If the case 2) is satisfied, then
3 AU, * dVe
; dt dUz,i
_ (Upa(t +dt) = Usa(?) 2 Vot +dt) = Vi alt)
- dt Up.o(t +dt) — Ugalt)

s (Uz,b(t +dt) — Uz,b(w)z Vob(t +dt) — Ve (t)

dt U, 5(t + dt) — Uz p(t)
 (Upalt +dt) = Usa(t) 2 1
- (dt) Upo(t + dt) — Uz a(t)
Upo(t+dt) — Ugp(8)\ -1
+ (it) U o(t 1 db) — Usa(D)
 Upat+dt) = Usa(t) Usp(t+dt) — Usp(t)
(dt)? - (dt)?
= e Vet) ~ Una0) = Usalt-+ d0) + Urs(0)
- (d%z{uz,a(t b dt) = Usp(t 4+ db) + Us ()

U, o(®)} >0

because U, o(t+ dt) is the maximum at time ¢ + di and
U, »(t) is the maximum at time t for the vertex z. The
contribution from each term is either O or positive; therefore

dUz,i 2de,i dUl,l 2dVW-
;(ot) d_UI:-20 and _;;(=) ..

E
<0¢d—<0.

Q.E.D.

REFERENCES

[1] P.J. Denning and W.F. Tichy, “Highly parallel computation,” Science,
vol. 250, pp. 1217-1222, Nov. 1990.

[2] W.S. McCulloch and W. H. Pitts, “A logical calculus of ideas immanent

in nervous activity,” Bull. Math. Biophys., vol. 5, p. 115, 1943.

J.J. Hopfield and D.W. Tank, “Neural computation of decisions in

oplimization problems,” Biol. Cybern., vol. 52, pp. 141-152, 1985.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York: W. H. Freeman, 1979.

[5] J.A. Bondy and S.C. Locke, “Largest bipartite subgraph in triangle-
free graphs with maximum degree three,” J. Graph Theory, vol. 10,
pp. 477-504, 1986.

[6] F.Barahona, “On some weakly bipartite graphs,” Oper. Res. Lett., vol. 2,
no. 5, pp. 239-242, 1983.

[7] C.-P. Hsu, “Minimum-via topological routing,” IEEE Trans. Computer-
Aided Design, vol. 2, pp. 235-246, Oct. 1983.

[8) Y. Takefuji and K.C. Lee, “A near-optimum parallel planarization
algorithm,” Science, vol. 245, pp. 1221-1223, Sept. 1989.

[9] Y. Takefuji and K.C. Lee, “A parallel algorithm for tiling problems,”

IEEE Trans. Neural Networks, vol. 1, pp. 143-145, Mar. 1990.

Y. Takefuji, L. L. Chen, K. C. Lee, and J. Huffman., “Parallel algorithm

for finding a near-maximum independent set of a circle graph,” IEEE

Trans. Neural Networks, vol. 1, pp. 263—267, Sept. 1990.

Y. Takefuji and K. C. Lee, “Atrtificial neural networks for four-coloring

map problems and k-colorability problems,” IEEE Trans. Circuits Syst.,

vol. 38, pp. 326333, Mar. 1991.

N. Funabiki and Y. Takefuji, “A parallel algorithm for spare allocation

problems,” IEEE Trans. Reliability, vol. 40, no. 3, pp. 338-346, 1991.

E

(0]

[11]

[12)

