
 A Novel Stealthy Data Capture Tool for Honeynet System
NGUYEN ANH QUYNH, YOSHIYASU TAKEFUJI

Graduate School of Media and Governance
Keio University

5322 Endoh, Fujisawa, 252-8520
JAPAN

{quynh,takefuji}@sfc.keio.ac.jp

Abstract: Data capture tool is one of the core components of a honeynet system. The most vital requirement of
this component is: it must function as stealthily as possible, so the intruder is not aware of its presence. Currently
Sebek is the most sophisticated tool for this purpose. Unfortunately Sebek is rather easy to detect, even with
unprivileged right access. This paper presents a novel approach to improve Sebek on this aspect. We proposes a
design and implementation of a tool named Xebek, which based on Xen technology, to fix the most outstanding
problems of Sebek. Our experimental results prove that Xebek is much more covert, while the reliability and
efficient are improved significantly.

Key-Words: Xen, stealthy communication, data capture tool, intrusion detection, security attack, honeynet

1 Introduction
Honeynet ([1], [2]) is a high-interaction type of
honeypot [3] with the purpose: to gather information
about threats. These collected information is used to
better understand threats, how they are evolving and
changing, in order to counter those threats in the best
way possible. If applying honeynet properly, we can
discover the novel attack patterns and unknown
security holes. Honeynet also helps to study the
attacker's motives.

The honeynet consists of 3 key components:
– Data control: this component is used to contain

the intruder's activities and ensure that he does
not cause any harm to other production systems
outside the honeynet.

– Data capture: honeynet must capture all activities
within the honeynet, together the information
entered and left the system.

– Data collection: the gathered information got
from the capture component must be securely and
secretly forwarded to a central data server. This
allows data captured from various honeynet
sensors to be centrally collected for analysis and
archiving.

Regarding data capture tool, Sebek [4] is the widely
used in current honeynet technology. Sebek
architecture consists of 2 key components: a kernel
module run on honeypot system, and a central server
to collect data. The first component, Sebek kernel
module, can capture intruder's activities and transfer
the collected data to a Sebek server (sebekd) run on a
central machine, and the analyzing process will be
taken there with some utilities provided with Sebek
package.

One of the vital requirements of the data capture
component is: it must be as covert as possible, so the
intruder never knows that he is under watch eye. To
satisfy that demand, Sebek applies many tricks
borrowed from the black-hat community.
Unfortunately those tricks are not enough to cover
Sebek: many methods can be used to detect Sebek's
presence, and some of them are not even required
privileged access right.

Besides, sebekd server must expose to the network to
capture data forwarded from honeynet, and this can
causes another headache: this server must be
protected at all cost, or the attacker will bring it
down, then he can do anything he likes to the
honeynet he broken it without worrying that he is
being observed.

This paper proposes a novel approaches to eliminate
the above problems of Sebek. We will present a new
architecture together a prototype implementation of a
new data capture tool named Xebek on Xen Virtual
Machine environment. While Xebek still has the
capture ability of Sebek, it is much more stealthy, far
more reliable and the efficiency also significantly
increases.

This paper consists of 6 parts: the next part discusses
in detail the drawbacks of Sebek, while the 3rd part
outlines the architecture and design of Xebek and
points out the advantage of this approach, then
discusses in detail about Xebek implementation.
Some necessary steps to deploy Xebek are explained

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp207-212)

in 4h part. Next part summaries related works. Our
conclusions will close this paper in 6th part.

 2 Sebek Problems
As we discussed above, Sebek is the widely-used data
capture tool in honeynet technology ([5]). The reason
is obviously: being inside the kernel, Sebek has the
opportunity to capture all the necessary data
including keystrokes, input and output data from file
system or network socket, while it can control the
whole system as it wants. Sebek even patches the
kernel to hide its presence from system users, so the
intruder will have hard time to discover its existence.

Unfortunately while many efforts are put on Sebek to
make it more covert, Sebek is still rather easy to
uncover and defeat. Here are some of the most
noticeable methods:
1. Unprivileged local user can run a simple command
that generates big input or output, such as the dd-
attack method proposed by M.Dornseif et al [6], then
check to see if the network performance is decreased
with ping command. The reason is data captured from
all the input and output are forwarded to the central
Sebekd server via network stack, and this activity
may lead to congest network stack if the data is
enormous
2. Though Sebek tries to patch the network stack to
hide the correct network statistics when using
network layer to send data, we can still compare the
internal statistics got from inside the kernel with what
the system shows to userspace [6]. The difference
will disclose the presence of Sebek.
3. Sebek is a kernel module inserted into the system,
so it is listed in the kernel module list (with lsmod
command on Linux). Though we can try to hide it
with another kernel module (like the clean method
proposed by adore-ng [7]), Sebek module can still be
found with a brute-force scanning technique [8]
4. Sebek replaces some systemcalls with its own
functions. This lead to another way to discover
Sebek: we just need to check to see if the address of
these system calls is are abnormal places in the
memory. If that is the case, chances are Sebek is
present in the kernel.
5. After detecting Sebek, the intruder can remove it
easily by recovering the original system call (see
unsebek.c [9]). The fact that Sebek is a kernel module
makes it easier to do that.
6. Sebek sends the captured data to the central server
via network. If the intruder has a sniffer (such as
tcpdump [10]) installed at the right place, he will see
those data and easily figure out that his penetrated
system is a honeynet.
7. The central server must expose to the network to
receive data sent from the honeynet. That will tempt

the intruder to attack this server to bring down the
fundamental component of our honeynet. This is not
a theory, but the actual threat: J.Corey [11] proposes
such a method, in which sebekd will be taken over if
it uses a libpcap library with buffer overflow bug.

As we see, there are too much problems with the
current Sebek, and they all make honeynet less
attractive solution for security practices.

 3 Xebek Solution
This part presents Xebek solution, which can replace
Sebek as an effective data capture tool, while it can
eliminate many problems of Sebek. Because Xebek is
made to work in Xen environment, we will first take
a brief look at Xen technology, and then discuss more
about Xebek architecture and implementation.

3.1 Xen Virtual Machine
Xen [12, 13] is a virtual machine monitor initially
developed by the University of Cambridge Computer
Laboratory and now promoted by various industrial
monsters like Intel, AMD, IBM, HP, RedHat, Novel
and by the whole open source community. Being
released under the open source GNU GPL license,
Xen can be used to partition a machine to support the
concurrent execution of multiple operating systems
(OS). Commodity OS (now officially Linux,
FreeBSD, NetBSD are supported) can run on Xen
with small changes to the kernel. Xen is outstanding
because the performance overhead introduced by
virtualization is negligible: the slowdown is around
only 3% [14]. Various practices take the advantages
offered by Xen, such as server consolidation, co-
located hosting facilities, distributed services and
application mobility.

Xen community is working hard to gradually push
Xen into Linux kernel, so it will be available for
every Linux users. The process is expected to start
from kernel 2.6.15.

3.2 Xebek Design
Goals and Approaches: Xebek is designed with the
aim to overcome the problems posed by Sebek in
honeynet environment.
1. The first goal of Xebek is to capture data as Sebek
does on honeynet system. In our Xen diagram the
honeynet system runs on a DomU, and all the
activities happened inside this domain must be
captured : this includes keystrokes, input and output
from file system and socket. To do that, Xebek
employs the same techniques as Sebek does by
modifying kernel system calls. But while Sebek
works as a module, we propose Xebek as kernel
patch, so we do not need to worry about hiding kernel

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp207-212)

module as Sebek does, and it is also more difficult for
intruder to remove Xebek from kernel.
2. Another mission for Xebek is to eliminate the
problem of leaving many traces while sending data to
through the network stack with Sebek. To solve this
trouble, Xebek is designed so all the data is
forwarded to the central server via shared memory,
and it never uses network stack like Sebek does.
Consequently the intruder cannot detect the data by
looking at network traffic like he can with Sebek.
One more advantage of this approach is: data is sent
via shared memory, so the reliability and efficiency is
significantly increased.
3. One more target is to protect the central server
against the possible attack from outside. Regarding
this issue, we put the central server (called xebekd) on
Domain-0 (Dom0), and this server will get all the
data sent out from user domain (DomU) via shared
memory. Because we no longer use network to
deliver data, xebekd is not necessarily exposed to the
network like sebekd does.
4. To make Xebek an attractive option to practical
and research community, it is a good idea to make the
output logging data and add-in tools compatible with
Sebek as much as possible. This will help peole
familiar with Sebek to switch to Xebek.
5. The final goal is Xebek must be flexible, so the
administrator can disable or enable it as he desires at
run-time.

All of those goals and approaches lead us to the
architecture for Xebek as followings.

Architecture: Xebek consists of 4 main components:
data capture tool in DomU (xebekU), data receiver in
Dom0 (xebek0), data collection daemon (xebekd) and
analyzing utilities. (See figure 1)

Figure 1: Xebek architecture

xebekU: xebekU is a kernel code in kernel of DomU.
This code patches the system calls (such as open,
close, read, write, socket,...) to gather the data coming
in and out of system. The collected data are then
forwarded to xebek0 via a shared memory between
DomU and Dom0. At run-time, the administrator can
choose to enable or disable xebekU with an
instruction sent from Dom0's user-space.

xebek0: xebek0 is a kernel code in kernel-space of
Dom0. xebek0 waits for and gathers data sent from
xebekU. xebek0 and xebekU share a memory area and
this memory is used to exchange the collection data.
Besides, xebek0 registers a software device (at
/dev/xebek) and sends data records to the collection
daemon xebekd in Dom0's user-space via this device.

xebekd: this daemon process runs in user-space of
Dom0, and records the data sent from xebek0 put in a
device mentioned above. The recording data is
separated for each domain in a logging directory.

Add-on utilities: Xebek has some utilities to extract
interested data from the logging files of xebekd. We
intend to provide what Sebek provides with Sebek
package, it is easier for people to adopt Xebek. For
the time being, a tool to extract keystrokes from
logging data and another tool to upload data to a SQL
server are available.

3.2 Xebek Implementation
At the moment Xebek is implemented only in Linux.
The reason is other OSes (like FreeBSD and
NetBSD) are not ready for Xen 3.0, the most
advanced Xen version we are working on, yet. So in
this part we will present Xebek for Linux
environment. The same techniques can be applied for
others, however.

xebekU: xebekU is the kernel code run in DomU.
One of the important jobs of xebekU is to gather the
data from I/O systemcalls such as open, close, read,
write, socket,.... To do that these systemcalls in
DomU's kernel is modified, so the patched
systemcalls deliver their data to xebekU. With each of
these systemcalls, we define corresponding type, and
the type is recorded with the logging data, so we can
distinguish these data when analyzing them later.
Some of the types are: OPEN, CLOSE, READ,
WRITE (for sys_open, sys_close, sys_read,
sys_write,...). Those records will be saved in a
structure of xebek_packet type (see figure 2), in
which we save also the owner's uid, process ID and
inode number of the corresponding file. The actual
data will follow the packet. This format is compatible
with Sebek logging format, and that is one of our

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp207-212)

important targets.

struct xebek_packet {

 u32 magic; /* magic value of packet*/
 u16 version; /* xebek's version */
 uid_t uid; /* tty's owner */
 pid_t pid; /* process id */
 duint16_t length; /* payload size */
 long inode; /* file's inode */
 struct timeval time; /* time of event */
} __attribute__((packed));

Figure 2: xebek_packet structure

As DomU and Dom0 run on the same physical
machine, xebekU and xebek0 can share memory with
each other. When xebekU initializes, it allocates some
memory for sharing (the amount of shared memory is
configurable at runtime - by default is 4 page, which
is equivalent to 16KB on x86 systems), and grants
those memory to Dom0 by using Xen grant reference
API ([15]). This shared memory will be used to store
the logging data fetched from the above system calls.

To communicate with xebek0, xebekU assigns an
event-channel port to send notifications to xebek0.
After that, xebekU informs xebek0 the value of grant
reference got in the above step, together with the
event-channel port. At this moment, the event-
channel is not established yet, so xebekU writes these
information to xenstore via xenbus interface.

At run-time, xebekU puts the gathered logging data
into the shared memory, then notifies xebek0 via the
event-channel about the newly-arrived data. xebek0
would be awaken from the possible sleep and reads
the data out, then updates the internal share memory
structure respectively. (More about the structure of
shared memory will be discussed later)

xebek0: In Dom0, when initializing xebek0 registers
a xenbus watch to listen for change to xenstore.
When it detects the new notifications written to
xenstore by xebekU, xebek0 will map the shared
memory reference granted by xebekU. Subsequently,
it allocates an event-channel port corresponding to
the event-channel port of xebekU. Finally, xebek0
binds its event-channel to an irq handler, so it can
handle the notification about the new logging data
dispatched from xebekU. From then on, xebekU and
xebek0 can contact through the established event-
channel.

Another job xebek0 must do when initializing is to
register a misc device (this device locates at
/dev/xebek). Whenever xebek0 gets the notification
from xebekU, it wakes up and gets the data from the
share memory, then puts these data into its internal

buffer of the device. The size of this buffer is also
configurable at boot time, which is 8 pages by default
(equivalent to 32KB on x86).

To distinguish the logging data from different
domains, xebek0 puts the logging data into a C
structure named device_packet. (See figure 3) This
structure will save domain id, so later xebekd can
figure out which DomU sent this message. Together
with domid, the length of message is also stored.
Other fields are taken from xebek_packet structure.
The actual logging data is appended at the end of the
structure, and everything is put into the buffer.

struct device_packet {

 domid_t domid; /* who sent this log? */
 u32 magic; /* magic value of packet*/
 u16 version; /* xebek's version */
 uid_t uid; /* tty's owner */
 pid_t pid; /* process id */
 duint16_t length; /* payload size */
 long inode; /* file's inode */
 struct timeval time; /* time of event */
 char buf[0]; /* actual payload */
} __attribute__((packed));

Figure 3: device_packet structure

When receving the request for data from userspace
(xebekd in particular) via the device /dev/xebek,
logging data wil be extracted out from this internal
buffer and sent to userspace.

Shared memory structure and xebek0's internal
buffer: Since Xebek is designed to collect logging
data from some systemcalls, chances are the
incoming data is so big that Xebek cannot handle the
data fast enough. Though it is favorable to give
Xebek a big buffer for its share memory and internal
buffer, too much data arrives at the same time are
what we must take into account.

Another difficulty is: the shared buffer must be read
and written at the same time by xebekU and xebek0.
These conflicted activities can causes the race issues.

Those troubles direct us to the decision: the shared
buffer should be designed as a ring buffer. Ring
buffer is special data structure which has 2 heads: one
for reading and one for writing, and these heads can
wrap-around when they reach the end of the buffer.
Writing data to buffer will take away some spaces,
but reading from the buffer will release some spaces,
and the free space then can be used for another
writing request later. Figure 4 below declares the
ring buffer structure.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp207-212)

